-
Notifications
You must be signed in to change notification settings - Fork 1
/
data.py
70 lines (63 loc) · 3.45 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# Based on https://github.com/NVIDIA/flowtron/blob/master/data.py
# Original license text:
###############################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
###############################################################################
import torch
import torch.utils.data
from tts_text_processing.text_processing import TextProcessing
class Data(torch.utils.data.Dataset):
def __init__(self, datasets, filter_length, hop_length, win_length,
sampling_rate, n_mel_channels, mel_fmin, mel_fmax, f0_min,
f0_max, max_wav_value, use_f0, use_energy_avg, use_log_f0,
use_scaled_energy, symbol_set, cleaner_names, heteronyms_path,
phoneme_dict_path, p_phoneme, handle_phoneme='word',
handle_phoneme_ambiguous='ignore', speaker_ids=None,
include_speakers=None, n_frames=-1,
use_attn_prior_masking=True, prepend_space_to_text=True,
append_space_to_text=True, add_bos_eos_to_text=False,
betabinom_cache_path="", betabinom_scaling_factor=0.05,
lmdb_cache_path="", dur_min=None, dur_max=None,
combine_speaker_and_emotion=False, **kwargs):
self.tp = TextProcessing(
symbol_set, cleaner_names, heteronyms_path, phoneme_dict_path,
p_phoneme=p_phoneme, handle_phoneme=handle_phoneme,
handle_phoneme_ambiguous=handle_phoneme_ambiguous,
prepend_space_to_text=prepend_space_to_text,
append_space_to_text=append_space_to_text,
add_bos_eos_to_text=add_bos_eos_to_text)
def get_text(self, text):
return torch.LongTensor(self.tp.encode_text(text))