-
Notifications
You must be signed in to change notification settings - Fork 1
/
autoregressive_flow.py
235 lines (200 loc) · 9.88 KB
/
autoregressive_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# AR_Back_Step and AR_Step based on implementation from
# https://github.com/NVIDIA/flowtron/blob/master/flowtron.py
# Original license text:
###############################################################################
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
###############################################################################
# Original Author and Contact: Rafael Valle
# Modification by Rafael Valle
import torch
from torch import nn
from common import DenseLayer, SplineTransformationLayerAR
class AR_Back_Step(torch.nn.Module):
def __init__(self, n_attr_channels, n_speaker_dim, n_text_dim,
n_hidden, n_lstm_layers, scaling_fn, spline_flow_params=None):
super(AR_Back_Step, self).__init__()
self.ar_step = AR_Step(n_attr_channels, n_speaker_dim, n_text_dim,
n_hidden, n_lstm_layers, scaling_fn,
spline_flow_params)
def forward(self, mel, context, lens):
mel = torch.flip(mel, (0, ))
context = torch.flip(context, (0, ))
# backwards flow, send padded zeros back to end
for k in range(mel.size(1)):
mel[:, k] = mel[:, k].roll(lens[k].item(), dims=0)
context[:, k] = context[:, k].roll(lens[k].item(), dims=0)
mel, log_s = self.ar_step(mel, context, lens)
# move padded zeros back to beginning
for k in range(mel.size(1)):
mel[:, k] = mel[:, k].roll(-lens[k].item(), dims=0)
return torch.flip(mel, (0, )), log_s
def infer(self, residual, context):
residual = self.ar_step.infer(
torch.flip(residual, (0, )), torch.flip(context, (0, )))
residual = torch.flip(residual, (0, ))
return residual
class AR_Step(torch.nn.Module):
def __init__(self, n_attr_channels, n_speaker_dim, n_text_channels,
n_hidden, n_lstm_layers, scaling_fn, spline_flow_params=None):
super(AR_Step, self).__init__()
if spline_flow_params is not None:
self.spline_flow = SplineTransformationLayerAR(
**spline_flow_params)
else:
self.n_out_dims = n_attr_channels
self.conv = torch.nn.Conv1d(n_hidden, 2*n_attr_channels, 1)
self.conv.weight.data = 0.0 * self.conv.weight.data
self.conv.bias.data = 0.0 * self.conv.bias.data
self.attr_lstm = torch.nn.LSTM(n_attr_channels, n_hidden)
self.lstm = torch.nn.LSTM(n_hidden + n_text_channels + n_speaker_dim,
n_hidden, n_lstm_layers)
if spline_flow_params is None:
self.dense_layer = DenseLayer(in_dim=n_hidden,
sizes=[n_hidden, n_hidden])
self.scaling_fn = scaling_fn
def run_padded_sequence(self, sorted_idx, unsort_idx, lens, padded_data,
recurrent_model):
"""Sorts input data by previded ordering (and un-ordering) and runs the
packed data through the recurrent model
Args:
sorted_idx (torch.tensor): 1D sorting index
unsort_idx (torch.tensor): 1D unsorting index (inverse sorted_idx)
lens: lengths of input data (sorted in descending order)
padded_data (torch.tensor): input sequences (padded)
recurrent_model (nn.Module): recurrent model to run data through
Returns:
hidden_vectors (torch.tensor): outputs of the RNN, in the original,
unsorted, ordering
"""
# sort the data by decreasing length using provided index
# we assume batch index is in dim=1
padded_data = padded_data[:, sorted_idx]
padded_data = nn.utils.rnn.pack_padded_sequence(
padded_data, lens.cpu())
hidden_vectors = recurrent_model(padded_data)[0]
hidden_vectors, _ = nn.utils.rnn.pad_packed_sequence(hidden_vectors)
# unsort the results at dim=1 and return
hidden_vectors = hidden_vectors[:, unsort_idx]
return hidden_vectors
def get_scaling_and_logs(self, scale_unconstrained):
if self.scaling_fn == 'translate':
s = torch.exp(scale_unconstrained*0)
log_s = scale_unconstrained*0
elif self.scaling_fn == 'exp':
s = torch.exp(scale_unconstrained)
log_s = scale_unconstrained # log(exp
elif self.scaling_fn == 'tanh':
s = torch.tanh(scale_unconstrained) + 1 + 1e-6
log_s = torch.log(s)
elif self.scaling_fn == 'sigmoid':
s = torch.sigmoid(scale_unconstrained + 10) + 1e-6
log_s = torch.log(s)
else:
raise Exception("Scaling fn {} not supp.".format(self.scaling_fn))
return s, log_s
def forward(self, mel, context, lens):
dummy = torch.FloatTensor(1, mel.size(1), mel.size(2)).zero_()
dummy = dummy.type(mel.type())
# seq_len x batch x dim
mel0 = torch.cat([dummy, mel[:-1]], 0)
self.lstm.flatten_parameters()
self.attr_lstm.flatten_parameters()
if lens is not None:
# collect decreasing length indices
lens, ids = torch.sort(lens, descending=True)
original_ids = [0] * lens.size(0)
for i, ids_i in enumerate(ids):
original_ids[ids_i] = i
# mel_seq_len x batch x hidden_dim
mel_hidden = self.run_padded_sequence(
ids, original_ids, lens, mel0, self.attr_lstm)
else:
mel_hidden = self.attr_lstm(mel0)[0]
decoder_input = torch.cat((mel_hidden, context), -1)
if lens is not None:
# reorder, run padded sequence and undo reordering
lstm_hidden = self.run_padded_sequence(
ids, original_ids, lens, decoder_input, self.lstm)
else:
lstm_hidden = self.lstm(decoder_input)[0]
if hasattr(self, 'spline_flow'):
# spline flow fn expects inputs to be batch, channel, time
lstm_hidden = lstm_hidden.permute(1, 2, 0)
mel = mel.permute(1, 2, 0)
mel, log_s = self.spline_flow(mel, lstm_hidden, inverse=False)
mel = mel.permute(2, 0, 1)
log_s = log_s.permute(2, 0, 1)
else:
lstm_hidden = self.dense_layer(lstm_hidden).permute(1, 2, 0)
decoder_output = self.conv(lstm_hidden).permute(2, 0, 1)
scale, log_s = self.get_scaling_and_logs(
decoder_output[:, :, :self.n_out_dims])
bias = decoder_output[:, :, self.n_out_dims:]
mel = scale * mel + bias
return mel, log_s
def infer(self, residual, context):
total_output = [] # seems 10FPS faster than pre-allocation
output = None
dummy = torch.cuda.FloatTensor(
1, residual.size(1), residual.size(2)).zero_()
self.attr_lstm.flatten_parameters()
for i in range(0, residual.size(0)):
if i == 0:
output = dummy
mel_hidden, (h, c) = self.attr_lstm(output)
else:
mel_hidden, (h, c) = self.attr_lstm(output, (h, c))
decoder_input = torch.cat((mel_hidden, context[i][None]), -1)
if i == 0:
lstm_hidden, (h1, c1) = self.lstm(decoder_input)
else:
lstm_hidden, (h1, c1) = self.lstm(decoder_input, (h1, c1))
if hasattr(self, 'spline_flow'):
# expects inputs to be batch, channel, time
lstm_hidden = lstm_hidden.permute(1, 2, 0)
output = residual[i:i+1].permute(1, 2, 0)
output = self.spline_flow(output, lstm_hidden, inverse=True)
output = output.permute(2, 0, 1)
else:
lstm_hidden = self.dense_layer(lstm_hidden).permute(1, 2, 0)
decoder_output = self.conv(lstm_hidden).permute(2, 0, 1)
s, log_s = self.get_scaling_and_logs(
decoder_output[:, :, :decoder_output.size(2)//2])
b = decoder_output[:, :, decoder_output.size(2)//2:]
output = (residual[i:i+1] - b)/s
total_output.append(output)
total_output = torch.cat(total_output, 0)
return total_output