forked from zhayujie/chatgpt-on-wechat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
351 lines (306 loc) · 15.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# encoding:utf-8
import json
import logging
import os
import pickle
import copy
from common.log import logger
# 将所有可用的配置项写在字典里, 请使用小写字母
# 此处的配置值无实际意义,程序不会读取此处的配置,仅用于提示格式,请将配置加入到config.json中
available_setting = {
# openai api配置
"open_ai_api_key": "", # openai api key
# openai apibase,当use_azure_chatgpt为true时,需要设置对应的api base
"open_ai_api_base": "https://api.openai.com/v1",
"proxy": "", # openai使用的代理
# chatgpt模型, 当use_azure_chatgpt为true时,其名称为Azure上model deployment名称
"model": "gpt-3.5-turbo", # 还支持 gpt-4, gpt-4-turbo, wenxin, xunfei, qwen
"use_azure_chatgpt": False, # 是否使用azure的chatgpt
"azure_deployment_id": "", # azure 模型部署名称
"azure_api_version": "", # azure api版本
# Bot触发配置
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
"single_chat_reply_suffix": "", # 私聊时自动回复的后缀,\n 可以换行
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_chat_reply_prefix": "", # 群聊时自动回复的前缀
"group_chat_reply_suffix": "", # 群聊时自动回复的后缀,\n 可以换行
"group_chat_keyword": [], # 群聊时包含该关键词则会触发机器人回复
"group_at_off": False, # 是否关闭群聊时@bot的触发
"group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
"group_name_keyword_white_list": [], # 开启自动回复的群名称关键词列表
"group_chat_in_one_session": ["ChatGPT测试群"], # 支持会话上下文共享的群名称
"nick_name_black_list": [], # 用户昵称黑名单
"group_welcome_msg": "", # 配置新人进群固定欢迎语,不配置则使用随机风格欢迎
"trigger_by_self": False, # 是否允许机器人触发
"text_to_image": "dall-e-2", # 图片生成模型,可选 dall-e-2, dall-e-3
# Azure OpenAI dall-e-3 配置
"dalle3_image_style": "vivid", # 图片生成dalle3的风格,可选有 vivid, natural
"dalle3_image_quality": "hd", # 图片生成dalle3的质量,可选有 standard, hd
# Azure OpenAI DALL-E API 配置, 当use_azure_chatgpt为true时,用于将文字回复的资源和Dall-E的资源分开.
"azure_openai_dalle_api_base": "", # [可选] azure openai 用于回复图片的资源 endpoint,默认使用 open_ai_api_base
"azure_openai_dalle_api_key": "", # [可选] azure openai 用于回复图片的资源 key,默认使用 open_ai_api_key
"azure_openai_dalle_deployment_id":"", # [可选] azure openai 用于回复图片的资源 deployment id,默认使用 text_to_image
"image_proxy": True, # 是否需要图片代理,国内访问LinkAI时需要
"image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
"concurrency_in_session": 1, # 同一会话最多有多少条消息在处理中,大于1可能乱序
"image_create_size": "256x256", # 图片大小,可选有 256x256, 512x512, 1024x1024 (dall-e-3默认为1024x1024)
"group_chat_exit_group": False,
# chatgpt会话参数
"expires_in_seconds": 3600, # 无操作会话的过期时间
# 人格描述
"character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。",
"conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
# chatgpt限流配置
"rate_limit_chatgpt": 20, # chatgpt的调用频率限制
"rate_limit_dalle": 50, # openai dalle的调用频率限制
# chatgpt api参数 参考https://platform.openai.com/docs/api-reference/chat/create
"temperature": 0.9,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
"request_timeout": 180, # chatgpt请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间
"timeout": 120, # chatgpt重试超时时间,在这个时间内,将会自动重试
# Baidu 文心一言参数
"baidu_wenxin_model": "eb-instant", # 默认使用ERNIE-Bot-turbo模型
"baidu_wenxin_api_key": "", # Baidu api key
"baidu_wenxin_secret_key": "", # Baidu secret key
# 讯飞星火API
"xunfei_app_id": "", # 讯飞应用ID
"xunfei_api_key": "", # 讯飞 API key
"xunfei_api_secret": "", # 讯飞 API secret
# claude 配置
"claude_api_cookie": "",
"claude_uuid": "",
# claude api key
"claude_api_key":"",
# 通义千问API, 获取方式查看文档 https://help.aliyun.com/document_detail/2587494.html
"qwen_access_key_id": "",
"qwen_access_key_secret": "",
"qwen_agent_key": "",
"qwen_app_id": "",
"qwen_node_id": "", # 流程编排模型用到的id,如果没有用到qwen_node_id,请务必保持为空字符串
# 阿里灵积模型api key
"dashscope_api_key": "",
# Google Gemini Api Key
"gemini_api_key": "",
# wework的通用配置
"wework_smart": True, # 配置wework是否使用已登录的企业微信,False为多开
# 语音设置
"speech_recognition": True, # 是否开启语音识别
"group_speech_recognition": False, # 是否开启群组语音识别
"voice_reply_voice": False, # 是否使用语音回复语音,需要设置对应语音合成引擎的api key
"always_reply_voice": False, # 是否一直使用语音回复
"voice_to_text": "openai", # 语音识别引擎,支持openai,baidu,google,azure
"text_to_voice": "openai", # 语音合成引擎,支持openai,baidu,google,pytts(offline),azure,elevenlabs,edge(online)
"text_to_voice_model": "tts-1",
"tts_voice_id": "alloy",
# baidu 语音api配置, 使用百度语音识别和语音合成时需要
"baidu_app_id": "",
"baidu_api_key": "",
"baidu_secret_key": "",
# 1536普通话(支持简单的英文识别) 1737英语 1637粤语 1837四川话 1936普通话远场
"baidu_dev_pid": 1536,
# azure 语音api配置, 使用azure语音识别和语音合成时需要
"azure_voice_api_key": "",
"azure_voice_region": "japaneast",
# elevenlabs 语音api配置
"xi_api_key": "", #获取ap的方法可以参考https://docs.elevenlabs.io/api-reference/quick-start/authentication
"xi_voice_id": "", #ElevenLabs提供了9种英式、美式等英语发音id,分别是“Adam/Antoni/Arnold/Bella/Domi/Elli/Josh/Rachel/Sam”
# 服务时间限制,目前支持itchat
"chat_time_module": False, # 是否开启服务时间限制
"chat_start_time": "00:00", # 服务开始时间
"chat_stop_time": "24:00", # 服务结束时间
# 翻译api
"translate": "baidu", # 翻译api,支持baidu
# baidu翻译api的配置
"baidu_translate_app_id": "", # 百度翻译api的appid
"baidu_translate_app_key": "", # 百度翻译api的秘钥
# itchat的配置
"hot_reload": False, # 是否开启热重载
# wechaty的配置
"wechaty_puppet_service_token": "", # wechaty的token
# wechatmp的配置
"wechatmp_token": "", # 微信公众平台的Token
"wechatmp_port": 8080, # 微信公众平台的端口,需要端口转发到80或443
"wechatmp_app_id": "", # 微信公众平台的appID
"wechatmp_app_secret": "", # 微信公众平台的appsecret
"wechatmp_aes_key": "", # 微信公众平台的EncodingAESKey,加密模式需要
# wechatcom的通用配置
"wechatcom_corp_id": "", # 企业微信公司的corpID
# wechatcomapp的配置
"wechatcomapp_token": "", # 企业微信app的token
"wechatcomapp_port": 9898, # 企业微信app的服务端口,不需要端口转发
"wechatcomapp_secret": "", # 企业微信app的secret
"wechatcomapp_agent_id": "", # 企业微信app的agent_id
"wechatcomapp_aes_key": "", # 企业微信app的aes_key
# 飞书配置
"feishu_port": 80, # 飞书bot监听端口
"feishu_app_id": "", # 飞书机器人应用APP Id
"feishu_app_secret": "", # 飞书机器人APP secret
"feishu_token": "", # 飞书 verification token
"feishu_bot_name": "", # 飞书机器人的名字
# 钉钉配置
"dingtalk_client_id": "", # 钉钉机器人Client ID
"dingtalk_client_secret": "", # 钉钉机器人Client Secret
"dingtalk_card_enabled": False,
# chatgpt指令自定义触发词
"clear_memory_commands": ["#清除记忆"], # 重置会话指令,必须以#开头
# channel配置
"channel_type": "", # 通道类型,支持:{wx,wxy,terminal,wechatmp,wechatmp_service,wechatcom_app,dingtalk}
"subscribe_msg": "", # 订阅消息, 支持: wechatmp, wechatmp_service, wechatcom_app
"debug": False, # 是否开启debug模式,开启后会打印更多日志
"appdata_dir": "", # 数据目录
# 插件配置
"plugin_trigger_prefix": "$", # 规范插件提供聊天相关指令的前缀,建议不要和管理员指令前缀"#"冲突
# 是否使用全局插件配置
"use_global_plugin_config": False,
"max_media_send_count": 3, # 单次最大发送媒体资源的个数
"media_send_interval": 1, # 发送图片的事件间隔,单位秒
# 智谱AI 平台配置
"zhipu_ai_api_key": "",
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",
"moonshot_api_key": "",
"moonshot_base_url":"https://api.moonshot.cn/v1/chat/completions",
# LinkAI平台配置
"use_linkai": False,
"linkai_api_key": "",
"linkai_app_code": "",
"linkai_api_base": "https://api.link-ai.tech", # linkAI服务地址
}
class Config(dict):
def __init__(self, d=None):
super().__init__()
if d is None:
d = {}
for k, v in d.items():
self[k] = v
# user_datas: 用户数据,key为用户名,value为用户数据,也是dict
self.user_datas = {}
def __getitem__(self, key):
if key not in available_setting:
raise Exception("key {} not in available_setting".format(key))
return super().__getitem__(key)
def __setitem__(self, key, value):
if key not in available_setting:
raise Exception("key {} not in available_setting".format(key))
return super().__setitem__(key, value)
def get(self, key, default=None):
try:
return self[key]
except KeyError as e:
return default
except Exception as e:
raise e
# Make sure to return a dictionary to ensure atomic
def get_user_data(self, user) -> dict:
if self.user_datas.get(user) is None:
self.user_datas[user] = {}
return self.user_datas[user]
def load_user_datas(self):
try:
with open(os.path.join(get_appdata_dir(), "user_datas.pkl"), "rb") as f:
self.user_datas = pickle.load(f)
logger.info("[Config] User datas loaded.")
except FileNotFoundError as e:
logger.info("[Config] User datas file not found, ignore.")
except Exception as e:
logger.info("[Config] User datas error: {}".format(e))
self.user_datas = {}
def save_user_datas(self):
try:
with open(os.path.join(get_appdata_dir(), "user_datas.pkl"), "wb") as f:
pickle.dump(self.user_datas, f)
logger.info("[Config] User datas saved.")
except Exception as e:
logger.info("[Config] User datas error: {}".format(e))
config = Config()
def drag_sensitive(config):
try:
if isinstance(config, str):
conf_dict: dict = json.loads(config)
conf_dict_copy = copy.deepcopy(conf_dict)
for key in conf_dict_copy:
if "key" in key or "secret" in key:
if isinstance(key, str):
conf_dict_copy[key] = conf_dict_copy[key][0:3] + "*" * 5 + conf_dict_copy[key][-3:]
return json.dumps(conf_dict_copy, indent=4)
elif isinstance(config, dict):
config_copy = copy.deepcopy(config)
for key in config:
if "key" in key or "secret" in key:
if isinstance(key, str):
config_copy[key] = config_copy[key][0:3] + "*" * 5 + config_copy[key][-3:]
return config_copy
except Exception as e:
logger.exception(e)
return config
return config
def load_config():
global config
config_path = "./config.json"
if not os.path.exists(config_path):
logger.info("配置文件不存在,将使用config-template.json模板")
config_path = "./config-template.json"
config_str = read_file(config_path)
logger.debug("[INIT] config str: {}".format(drag_sensitive(config_str)))
# 将json字符串反序列化为dict类型
config = Config(json.loads(config_str))
# override config with environment variables.
# Some online deployment platforms (e.g. Railway) deploy project from github directly. So you shouldn't put your secrets like api key in a config file, instead use environment variables to override the default config.
for name, value in os.environ.items():
name = name.lower()
if name in available_setting:
logger.info("[INIT] override config by environ args: {}={}".format(name, value))
try:
config[name] = eval(value)
except:
if value == "false":
config[name] = False
elif value == "true":
config[name] = True
else:
config[name] = value
if config.get("debug", False):
logger.setLevel(logging.DEBUG)
logger.debug("[INIT] set log level to DEBUG")
logger.info("[INIT] load config: {}".format(drag_sensitive(config)))
config.load_user_datas()
def get_root():
return os.path.dirname(os.path.abspath(__file__))
def read_file(path):
with open(path, mode="r", encoding="utf-8") as f:
return f.read()
def conf():
return config
def get_appdata_dir():
data_path = os.path.join(get_root(), conf().get("appdata_dir", ""))
if not os.path.exists(data_path):
logger.info("[INIT] data path not exists, create it: {}".format(data_path))
os.makedirs(data_path)
return data_path
def subscribe_msg():
trigger_prefix = conf().get("single_chat_prefix", [""])[0]
msg = conf().get("subscribe_msg", "")
return msg.format(trigger_prefix=trigger_prefix)
# global plugin config
plugin_config = {}
def write_plugin_config(pconf: dict):
"""
写入插件全局配置
:param pconf: 全量插件配置
"""
global plugin_config
for k in pconf:
plugin_config[k.lower()] = pconf[k]
def pconf(plugin_name: str) -> dict:
"""
根据插件名称获取配置
:param plugin_name: 插件名称
:return: 该插件的配置项
"""
return plugin_config.get(plugin_name.lower())
# 全局配置,用于存放全局生效的状态
global_config = {
"admin_users": []
}