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Introduction  1 

1 Introduction 

Internet of Things (IoT) is a global phenomenon receiving increasing interest from both 

industry and private users. Due to its growing popularity, IoT solutions need to adapt to 

various use-case requests. Not only within enterprises but also among private users there 

are new applications required: smart parking, asset tracking, construction equipment 

monitoring, smart wearables etc. Because of the scalability and remote locations 

involved, these examples share three main challenges: limited battery-life, growing traffic-

over-the-air and remote connectivity. 

The first and second challenges go often along with each other and are influenced by the 

communication protocols used. The quantity and length of packets involved are impacting 

on energy-consumption and data-usage. Transport protocols like TCP and UDP, for 

example, have different approaches regarding data-exchange. The first one is 

connection-oriented and involves more packets, while the second is connectionless and 

reduces network congestion. Within IoT, TCP and UDP are mostly abstracted by higher-

level messaging protocols that can handle back-end and applications requests. Among 

these one may find: MQTT, CoAP, MQTT-SN, DDS, AMQP and XMPP. The most popular 

is MQTT, working on top of TCP. It is supported by both Amazon Web Services (AWS) 

and Azure IoT [1]. Therefore, the IoT solutions providers "will select MQTT due to the 

relatively strong ecosystem support that has existed for many years" [2, p. 5]. Moreover, 

there are other solutions defined as device management protocols, which build on top of 

the previously mentioned messaging protocols and allow users to maintain device’s 

software, hardware, and configuration. The most representative among this category is 

Lightweight M2M (LwM2M) which builds on top of CoAP. "As network technologies and 

infrastructures such as 5G expand, the number of LwM2M-based products will increase, 

and accordingly, a platform for managing a large number of devices will be highly 

required" [3, p. 1]. 

The Remote Connectivity challenge, on the other hand, is about understanding the most 

suitable access technology when devices cannot rely neither on Personal Area Network 

(PAN) nor on Local Area Network (LAN) available nearby. The choice is therefore 

between different cellular IoT (cIoT) technologies. Proprietary Low Power Wide Area 

Network (LPWAN) standards like LoRaWAN and Sigfox are often not available worldwide 

and require additional infrastructure. On the other hand, industries standards like NB-IoT 

and LTE-M are present in more areas and allow a faster network development. 

1.1 Motivation 

The topic of the master’s thesis was conceived in collaboration with 1NCE GmbH, a 

mobile virtual network operator (MVNO) that has one of its main focuses on IoT 

connectivity. The company has a tight partnership with Amazon AWS which only supports 

MQTT in its IoT device management platform. Recently, 1NCE’s connectivity solution 

released a CoAP endpoint. This allows customers to send messages via CoAP, 

converted to MQTT for further elaboration within AWS IoT. As an additional step, 1NCE 

decided to start a feasibility analysis to embrace LwM2M which works mainly on top of 

CoAP. The goal is to understand the real impact on devices’ energy consumption and 

data-usage over cellular links compared to MQTT. Since the company is specialized in 

cellular connectivity, the study should focus on devices’ performances using the most 
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recent cIoT access technologies provided by 1NCE: LTE-M and NB-IoT. This is 

accomplished by this master’s thesis, representing a study on how LwM2M and MQTT 

perform in both LTE-M and NB-IoT. 

1.2 Task Description 

The goal of thesis is to compare and evaluate LwM2M and MQTT when operating over 

LTE-M and NB-IoT. In order to achieve the intent, the work not only includes a theoretical 

research about the involved topics, but also a practical comparison containing 

experiments. Consequently, along with the tools used, the work describes observations 

acquired from preliminary tests involving network, hardware, and software. These are 

particularly useful to understand events, predict scenarios or adjust configurations 

according to the expected behavior when comparing the protocols. Finally, a series of 

measurements using LTE-M and NB-IoT’s cellular links allow to draw the comparison and 

evaluation of LwM2M and MQTT. The detailed task description contains: 

1. Collection and comparison of Information and fundamentals regarding the four 

main backgrounds: LwM2M, MQTT, LTE-M and NB-IoT 

2. Choice of appropriate hardware, software, and measurement tools, i.e. board, ex-

tension board, modem, power, and network protocol analyzer, as well as LwM2M 

and MQTT’s clients and servers libraries 

3. Preparation of the experimental environment including clients and servers’ code 

adaption, cellular network analysis and hardware’s current behavior 

4. Adjustment and modifications based on preliminary tests involving the setup pre-

pared in 4.  

5. LwM2M and MQTT’s packets analysis and device’s energy consumption investiga-

tion first in LTE-M and later in NB-IoT. The measurements include same hardware 

and software configurations for both cellular technologies as well as equal typical 

protocol’s event phases for the study: initial connection, single device to server 

message, steady-state update, and mobility environment 

6. Comparison and evaluation of the results 

1.3 Related Works 

There is a recent and detailed work comparing MQTT and LwM2M (2020): “Comparing 

the efficiency of LwM2M and MQTT: hands-on test results of two technology clients on a 

typical IoT device” from the IoT testing firm Machnation [2]. The author focuses on the 

performance analysis of the two protocols within IoT platforms scenarios: AWS IoT for 

MQTT and AVSystem for LwM2M. Some of the test sessions and their results are listed 

below: 

• Initial Connection to the Broker/Server: “LwM2M and MQTT required 4213 

bytes and 14907 bytes, respectively, with the average LwM2M packet size be-

ing 9% smaller than the average MQTT packet size”; overall LwM2M is 72% (in 

terms of packet delivered) more efficient in this step 

• “LwM2M devices transmit 31% less data in a steady state than MQTT devices”. 

It refers to a 10-minute steady-state capture window 

• OTA Updates delivery: “MQTT is 11% more efficient than LwM2M over CoAP 

at delivering data during an over-the-air (OTA) firmware update” 

• “MQTT devices consume 33% more energy than LwM2M devices when meas-

ured at idle and 1, 30, and 60-second update intervals…”. LwM2M consumed 
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0.572 Wh while MQTT 0.433 Wh. The percentage refers to the average of the 

energy consumption in the different intervals. Regarding this last point the au-

thor finds the reason of such a large consumption gap in the framework used. 

AWS IoT seems to be faster but with high computational effort. Moreover, the 

test was performed with a Raspberry Pi 4 which lacks a power optimization. 

This may have negatively influenced the experiment 

Machnation shows data optimization for transmission under LwM2M especially in the 

initial connection and steady-state. MQTT on the other hand wins in the OTA updates. 

The power-consumption test is not exhausting since it strictly depends on the IoT 

framework used as well as the hardware’s power optimization. Nevertheless, the work 

concentrates on the comparison of LwM2M and MQTT within IoT platforms. Also, the 

experiment does not involve cellular networks. Machnation mentions constrained-

network environments, like cIoT, as areas of future research for testing LwM2M. 

Another related work is “Performance of TCP and UDP over Narrowband Internet of 

Things (NB-IoT)” by Wirges and Dettmar [4]. Here the analysis regards an NB-IoT link 

which is preferred to LTE-M due its missing coverage within Germany in 2019. MQTT 

works on top of TCP which is compared with MQTT-SN on top of UDP. The experiment 

shows that 89.60% of the packets sent under MQTT were lost against just 3.74% with 

MQTT-SN. This happens because TCP is extremely sensitive to delays in the link, while 

UDP not. The authors state that a high packet loss surely compromises the battery 

efficiency of devices. Moreover, NB-IoT usually operates with minimal signal 

requirements which makes the use of UDP even more meaningful. Although the use of 

MQTT-SN ensures a valid and robust comparison with MQTT, it leaves the test of a 

device management platform like LwM2M within NB-IoT open. Another interesting 

extension of the work may involve the use of LTE-M for the comparison of TCP- and 

UDP-based protocols. 

1.4 Thesis Structure 

This master’s thesis is divided into five main Chapters. The first two are about theoretical 

fundamentals: the first introduces LwM2M, MQTT, LTE-M and NB-IoT, necessary to 

comprehend this thesis. The second draws a first comparison between IoT protocols and 

cellular technologies based only on the previously mentioned fundamentals. The third 

Chapter provides details about the tools utilized during the experiments. On the other 

hand, Chapter four explains observations and issues deriving from preliminary tests 

involving cellular networks as well as the tools introduced in Chapter three. It also 

includes a detailed description of the experiments flow along with the parameters and 

configurations used. This section is useful to reproduce the experiments. Finally, Chapter 

five describes and analyzes the measurements. It is divided into four different typical 

LwM2M and MQTT cIoT devices’ activities: initial connection, single device to server 

message, steady-state update, and mobility scenario. Every activity has its own 

dedicated section, consisting of results. These are then evaluated to draw a comparison 

between LwM2M and MQTT via LTE-M and NB-IoT. 
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2 Fundamentals 

This Chapter introduces the relevant protocols and cellular access technologies that are 

compared throughout this thesis. It starts with Lightweight M2M followed by MQTT. The 

second part deals with LTE-M and NB-IoT. 

2.1 Lightweight M2M 

Lightweight M2M (LwM2M) is a device management protocol created by the Open Mobile 

Alliance (OMA) SpecWorks. Since OMA includes the most influential mobile operators, 

LwM2M represents the synthesis of the IoT market-needs nowadays. Software AG 

indicates it as one of the two “Adopt” Connectivity and Protocols trends just behind 

OpenAPI. This is a clear suggestion for companies as it will be playing a fundamental 

role in the future [5]. Although it is not an IETF specification it builds on top of RFCs’ 

protocols and securities standards. The high expectations regarding LwM2M lie in four 

main aspects: it is a UDP-based protocol running on top of CoAP; it relies on strong 

security fundamentals like bootstrapping, provisioning of secure credentials and ACL; it 

incorporates device management features like object management and data model 

definitions allowing a full adaptability to every use-case; it supports Low Power WAN 

(LPWAN) like LTE-M and NB-IoT, also in Non-IP Data Delivery (NIDD) environments.  

As an application layer protocol, it is comparable with i.e. Message Queue Telemetry 

Transport (MQTT) but the communication structure is different. First, MQTT is an IoT 

messaging protocol while LwM2M an IoT device management protocol. Secondly, data 

sending and retrieve actions just exist between client and server and do not involve a 

client-broker-client constellation like in MQTT. Thirdly, here is the server orchestrating 

the request by writing, reading, and asking for resources while the client acts as a passive 

entity. Nevertheless, LwM2M general use-cases remain the same as other messaging 

protocols: smart mining, cities, parking, utilities etc. The difference is the condition in 

which devices may operate: low-bandwidth and low coverage are some of environments 

where LwM2M or other UDP-based protocols may functionate better than others. As of 

2021 relevant IoT cloud platforms like AWS and Azure are not fully supporting LwM2M 

but rather rely on third-party bridges to access the internal data transfer logic. OMA 

SpecWorks organizes the LwM2M specification in two parts: the core technical document 

describes the messaging layer while the transport part how this interfaces to the selected 

transport method. 

2.1.1 Protocol Stack 

 

Figure 2.1: LwM2M Protocol Stack [6, p. 17] 
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LwM2M was developed as a device management protocol on top of CoAP which mainly 

operates over DTLS and UDP. First in version 1.1 and then in the latest 1.2, OMA 

expanded LwM2M’s protocol stack by including CoAP over TLS, TCP, LoRaWAN and 

Cellular IoT as well as on top of HTTP and MQTT over TLS and TCP. Figure 2.1 shows 

the protocol stack of version 1.2. 

2.1.2 Lightweight M2M Interfaces 

LwM2M interfaces describe how the client and the servers interact with each other. There 

is a bootstrap server and a regular server involved in the LwM2M enabler. The first one 

is relevant in the provisioning and security part, while the second one becomes important 

during the data transfer and in the RESTful request/response model, based on CoAP [7]. 

The four interfaces are the following: 

• Bootstrap Interface 

• Registration Interface 

• Device Management and Service Enablement Interface 

• Information Reporting Interface 

 

Figure 2.2: LwM2M Architecture [7, p. 20] 

Figure 2.2 shows in which context the interfaces are located: Registration Interface, 

Device Management and Service Enablement Interface, Information Reporting Interface 

involve LwM2M Server and LwM2M client, while Bootstrap Interface regulates the 

LwM2M Bootstrap Server/LwM2M Client flow. The next sections will describe the four 

interfaces in detail. 
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2.1.3 Bootstrap Interface 

The security credentials and certificates provisioning take place in the Bootstrap 

interface. The main actor here is the Bootstrap Server, which is an entity providing trusted 

certificated for the later Client-Server communication. It acts indeed as Key Distribution 

Center for the client, but it is not mandatory for every LwM2M scenario. Client and 

Bootstrap Server also communicate using the RESTful model. Some of the typical 

operations include: Bootstrap-Request, Bootstrap-Write, Bootstrap-Read, Bootstrap-

Delete and Bootstrap-Finish. These are used to modify the Security Object within the 

LwM2M Client (for more information about objects, please refer to Chapter 2.1.7). 

 

Figure 2.3: Bootstrap Interface Overview [7, p. 28] 

There are four different modes within the Bootstrap Interface and two of them do not 

require the Bootstrap Server: 

a. Factory Bootstrap 

In this case the manufacturer provisions the IoT device a-priori with all of the information 

required to establish a secure Client-Server connection. The Bootstrap Server is not 

necessary in this context. 

b. Bootstrap from Smartcard 

This is a very similar approach compared to the Factory Bootstrap. The credentials-

provision succeeds through a Smartcard to simulate a plug-and-play process. A secure 

channel between IoT device and card should exist, as mentioned in the LwM2M 1.2 Core 

Specification [7]. This approach does not include the Bootstrap Server neither. 

c. Client Initiated Bootstrap 

Figure 2.4 summarizes the transmission flow between Client and Bootstrap Server in this 

manner: 

0. The LwM2M Bootstrap Server has some sort of Database knowing that a specific 

client should receive a predefined certificate or key. This configuration is out of 

the OMA specification’s scope 

1. The LwM2M Client has manufacturer-provided credentials and knows which 

bootstrap server should be contacted 

2. The LwM2M Client initiates the Bootstrap by sending a request under DTLS. This 

also contains the necessary certificate to authorize the Bootstrap Server 

3. The LwM2M Bootstrap Server responds with objects containing the private key 

and the certificates necessary for the Client-Server Intercourse as well as the 

server’s endpoint to contact 

Notice that the key distribution between LwM2M Bootstrap Server and Server is also out 

of the LwM2M specification’s scope. This may be implemented thanks to an API. 
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Figure 2.4: Client Initiated Bootstrap 

d. Server-Initiated Bootstrap 

This mode allows the start of the bootstrapping process thanks to a trigger mechanism 

initiated by the LwM2M Server as depicted in Figure 2.5. This is the only main difference 

to the client initiated Bootstrap mode and was created as an alternative to other protocols 

for configuring the Bootstrap credentials within the LwM2M Client. This method cannot 

work without a pre-existing connection between server and client. Notice that in previous 

LwM2M specifications, the LwM2M Server was meant to create and send to Client its 

Bootstrap raw and public keys; this was due to the insufficient Deterministic Random 

Number Generator (DRNG) capabilities of some constrained devices. Nevertheless, 

OMA decided to abandon this because of security and NAT related problems that did not 

allow the Server to always reach the client. 

 

Figure 2.5: Server-Initiated Bootstrap 

2.1.4 Registration Interface 

Once the Bootstrap process is over, the registration interface regulates the handshake 

between LwM2M Client and Server as shown in Figure 2.6. The operations involved are: 

Register, Update and De-register. In the first one the Client provides its Objects and 

Resources as well as the its endpoint name. The second one is triggered when the 

lifetime expires or a certain event takes place, i.e. when a resource is modified. Finally, 

the De-registration ends the Client-Server connection. 
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Figure 2.6: LwM2M Client-Server Registration Flow [7, p. 42] 

2.1.5 Device Management and Service Enablement Interface 

 

Figure 2.7: Client-Server request/response flows in the Device Management and Service Enablement Interface [7, p. 54] 

Figure 2.7 represents request/response operations within the Device Management and 

Service Enablement Interface. On the left the server reads, writes, and executes 

resources while on the right it creates and deletes object’s instances (for more information 

about objects and resources please refer to Chapter 2.1.7). This interface allows 

synchronous communications. Create, Read, Read-Composite, Write, Write-Composite, 

Delete, Execute and Write-Attributes operations may refer to one or multiple (Composite 

operations) resources/objects/instances [7, p. 54]. The only exception is the Discover 

request where the LwM2M Server demands for the Client’s objects description. Another 

uncommon operation is the Write-Attributes. Here, the Server modifies the resource’s 

attribute to state conditions for the asynchronous communication. The next section 

enlightens more about this topic. 

2.1.6 Information Reporting Interface 

The LwM2M standard introduces a new interface for dealing with asynchronous 

operations. The Information Reporting Interface is indeed responsible for deliver 

information similarly to the publish/subscribe concept in MQTT. As Figure 2.8 describes, 

the Server decides which object and/or instances it would like to observe while the client 

notifies back when a condition is met (here the Server decides to observe /3311/0/5850 

which is the sensor’s temperature resource). This is defined thanks to the write-attribute 

request as described at the end of Chapter 2.1.5  by declaring the fields Property and 
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Notification. Properties specify the dimension, the number of resource’s instances, and 

the version, in case objects would have more instances. On the other hand, Notifications 

represent the notification’s condition: minimum and maximum notification time-interval, 

greater than or less than a resource’s numeric value, and step that states a value-

difference below which the device will not send the new data. In this case, the previously 

set condition is the minimum and maximum time-period (in seconds) for triggering a new 

message, p_min= 600 and p_max  = 780 seconds, between 10 and 13 minutes. In Figure 

2.8 the first temperature variation happens before p_min causing the message to be 

queued until reaching 600 s. The second one appears between p_min  and p_max  and 

this allows an instant notification. Finally, since there is no new incoming temperature the 

Client notifies the Server after 780 seconds with the old value. The operations used in 

the Information Reporting interface are therefore: Observe, Observe-Composite, Cancel 

Observation, Cancel Observation-Composite, Notify and Send. The last one plays a role 

when the client notifies information without having received any specific observation 

request. 

 

Figure 2.8: Temperature Observation by the Server in the Information Reporting Interface [7, p. 65] 

2.1.7 Object Model 

Every IoT device has one or more features integrated. As an example, a fire-alarm may 

have a flashing light, loudspeaker, smoke sensor, internal battery, and other components. 

Because LwM2M is a device management protocol, these properties are organized in a 

logical manner: the previously mentioned fire-alarm elements are called Resources and 

have an identifier. As Figure 2.9 shows, these Resources are then organized in Objects: 

flashing light, loudspeaker and smoke sensor belong to the fire-alarm object while internal 

battery, manufacturer, and serial number to the device object. Moreover, every Object 

and Resource may have multiple versions or copies of itself: these are called Instances. 

On Figure 2.9 you can notice instance number 0 and 1 of the fire-alarm object as well as 

the multiple ones belonging to the loudspeaker, smoke sensor and battery level 

resources. They are useful for extending the IoT device and in the same time keep the 
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old properties in case the Server or Bootstrap would not support the new ones. The URI 

format helps describing Objects, Resources, and Instances. For example, address 

3/0/9/0 would denote the device object, its first instance, battery level resource (defined 

as 9 in OMA’s device and resource registry) at its first instance. Every Resource may be 

then instantiated by the LwM2M Server using one of the following formats according to 

LwM2M version 1.2: plain text, opaque, TLV, JSON, CBOR, SenML JSON, and SenML 

CBOR.  

 

Figure 2.9: Example of Object Model in LwM2M 

LwM2M specifies default objects that are mandatory in every Client. Table 2.1 reports 

them with the associated fixed Object ID. OMA has also decided to limit the number of 

Objects and Resources available within the specification. The LwM2M Registry contains 

many objects already available. Organizations, companies as well as private people are 

also allowed to reserve an Object ID range for their purposes. Nevertheless, OMA 

oversees accepting or refusing the creation of new Objects due to redundancy or 

inappropriateness. 

Object Version Object ID 

LWM2M Security v1.2 0 

LwM2M Server v1.2 1 

LwM2M Access Control v1.1 2 

Device v1.2 3 

Connectivity Monitoring v1.3 4 

Firmware Update v1.1 5 

Location v1.0 6 

Connectivity Statistics v1.0 7 

LWM2M OSCORE v1.1 21 

LwM2M COSE v1.0 23 

MQTT Server v1.0 24 

LwM2M Gateway v1.0 25 

LwM2M Gateway Routing v1.0 26 

5GNR Connectivity v1.0 27 

Table 2.1: LwM2M Default Objects 
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Finally, the LwM2M Access Control List (ACL) provides an access control mechanism 

per instance. Every Object has its Access Control Object (ACO) whose ACL restricts the 

operations on Objects, Resources, or Instances for the LwM2M Server. Figure 2.10 

represents the fire-alarm’s ACO. The reported resources have different kind of 

permissions, but the ACL introduces Server permissions on top of them. In this situation, 

although Server 1 is allowed to read and write every resource, it will not be able to write 

on the loudspeaker resource since it only consents the read operation. 

 

Figure 2.10: Access Control Object with its ACL [7, p. 69] 

2.1.8 Security 

   

Figure 2.11: Security Object (left) and Security Mode Resource (right) 

As mentioned in the protocol stack section, because LwM2M is also running on top of 

CoAP it also supports DTLS. The credentials used for authenticating the DTLS client and 

the DTLS server to secure the communication between the LwM2M Client and the 

LwM2M Server are obtained during the bootstrap phase. This step is particularly 

important since the Client must use different key pairs for different Servers [7]. When the 

Bootstrap Server distributes the keys to the LwM2M Clients, the Security Object 

represents a central role: it stores the a-priori credentials for the DTLS channel with the 

Bootstrap Server as well as the Server’s keys for initiate the request/response phase. In 

case of a device update (also fundamental in IoT protocols) it protects the connection 

with a firmware-repository. Figure 2.11 left gives an overview of the security object. The 

Resource Security Mode (Figure 2.11 right) allows one between the following credentials 

mode: 

0. Pre-Shared Key: this an asymmetric security mode that is more efficient and 

requires low computational effort during encryption and decryption 

1. Raw Public Key: this is a way to use asymmetric keys avoiding the high com-

plexity of certificates. “With raw public keys, only a subset of the information 
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found in typical certificates is utilized: namely, the SubjectPublicKeyInfo structure 

of a PKIX certificate that carries the parameters necessary to describe the public 

key” [8] 

2. Certificates: a certificate Authority must control the authenticity of the certifi-

cates; this added to the creation and computation of PKs makes this asymmetric 

procedure the most complex and secure. This mode may create overhead in 

constrained IoT device. It is, therefore, not always recommended 

3. NoSec: no-DTLS scenarios should be avoided in production. This option may be 

useful during testing, when applying security out of LwM2M, or in a controlled 

environment behind a gateway 

4. Certificates with Enrolment over Secure Transport (EST): this is the most 

secure and it is part of DTLS 1.2. EST is a service between Client and CA provid-

ing a secure channel to generate certificates. An important prerequisite is that 

the client must generate the private key locally. This underlines the need of a 

high DRNG. Choosing this method may cause overhead-over-the-air and should 

be compared with the real security benefits [7] 

2.1.9  Sleep Mode 

 

Figure 2.12: Sleep Mode Flow [9, p. 54] 

Because of dealing with constrained IoT devices, LwM2M supports sleeping endpoints. 

In modern cellular IoT, remote devices are powered by an internal battery that must 

survive for several years. It is therefore fundamental to reduce the input power by entering 

the sleeping mode. As the communication flow in Figure 2.12 shows, the LwM2M Client 

communicates its sleeping cycles with the variable 𝑙𝑡 (lifetime). While the device is offline, 

the Server queues the messages for the whole lifetime duration. Once the Client wakes 

up and updates its status by sending a post operation, the Server is ready to send all of 

the previously buffered data. After exceeding the predeclared no-messaged time-frame 

after which the Client will enter the sleep mode, the Server restarts queuing its requests. 
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DTLS 1.2 CID and DTLS 1.3 comes with the connection ID (CID) feature. “Particularly 

when combining DTLS with the newly developed connection ID feature an existing DTLS 

session can be kept alive for a long time and the need for repeated handshakes can be 

avoided” [10]. This is extremely relevant for modern IoT constrained devices that want to 

establish a lightweight DTLS session. In fact, when a device usually wakes up, it has 

already lost its NAT binding. This is causing the impossibility by the server to decrypt the 

incoming messages: a new handshake causing unnecessary traffic would be needed. 

Supporting the newer versions of DTLS is therefore important to reduce traffic and battery 

consumptions. 

2.2 MQTT 

Message Queuing Telemetry Transport (MQTT) is a popular IoT messaging protocol. It 

is a Machine-to-Machine (M2M) connectivity standard that particularly suits to simple 

networks architectures [9]. In fact, with a minimum configuration it ensures stable 

transport of information between entities. These are represented by clients and brokers. 

The firsts are the endpoint where the information (also called message) can be computed 

and used for other scopes. The seconds are small servers which read messages 

incoming from the clients and routes them to the correct destination. This mechanism 

bases on the publish/subscribe principle where devices publish messages on specific 

topics. Referring to these, the broker then transports the messages to all the client which 

are subscribed to the same topics. MQTT is particularly meaningful when dealing a with 

a large number of devices reporting periodically an information such as the status of a 

light sensor. Those use-cases which involve constrained, non-performant and easy-to-

deploy devices transporting lightweight information are the most appropriate in a network 

adopting MQTT. Simplicity is the feature that increased its popularity among individuals 

as well as established IoT device management platforms. Broker and Client open-source 

libraries like Mosquitto and Paho (with this last one also configurable at higher level with 

Python) made the standard accessible for users willing to enter the IoT world. The same 

is true for business cloud platforms supporting device management: AWS and Azure 

adopted MQTT as the first things connectivity protocol [11]. In 2019 the Organization for 

the Advancement of Structured Information Standards (OASIS) introduced version MQTT 

5.0 with the following enhancements in respect to version 3.1.1 [12]: 

• User properties: these are information about the device where to specify 

capabilities or requirements. They are integrated in the connection and/or in the 

publish messages and are UTF-8 encoded strings. The standard allows an 

unlimited number of user properties 

• Payload format indicator: as the MQTT standard does not define any specific 

supported format, version 5.0 introduces the possibility of specifying if the payload 

is in UTF-8 format by setting a 1, or unknown by writing a 0 in the publish packet 

header 

• Shared subscriptions: within scalable solutions it is important to establish a loud 

balancing behavior towards the clients. MQTT 5 introduces therefore shared 

subscriptions where just a client inside a group gets the message; subsequently 

for example the group’s back-end scales the message horizontally 

• Reason codes: until MQTT 3.1.1 a broker could disconnect or reject clients 

without an explanation ACK. Now codes at application level indicates within the 

message’s header the cause of the interruption 
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• Session management: the broker has now the possibility of expiring a session 

with a client. By inserting a flag, the client indicates if the communication starts 

cleanly or by restoring a previous session 

2.2.1 Protocol Stack 

MQTT is built on top of TCP/IP "or over other network protocols that provide ordered, 

lossless, bidirectional connections" [9, p. 1]. The other suitable protocols are TLS (as a 

secure version of TCP) or WebSocket. A non-secure communication takes place in 

IANA’s registered port 1883 while a secure session over port 8883. Figure 2.13 shows 

the MQTT protocol stack. It may build on top TCP or WebSocket. On the other hand, 

when secured it may rely on TLS. An MQTT’s sister standard not anymore under 

maintenance is MQTT-SN. It operates on top of UDP and suits especially to those links 

where even lighter payloads are required and where the available bandwidth is limited. 

Wireless networks like BLE or IoT cellular standards like LoRaWAN or NB-IoT may 

benefit of a connections-less protocol like UDP. Nevertheless, MQTT-SN seems 

nowadays less relevant due to a difficult adaptability to various kind of wireless links as 

well as a non-maintained open-source project. 

 

Figure 2.13: MQTT Protocol Stack 

2.2.2 Network entities and Architecture 

a) MQTT Client 

Any endpoint represented by any kind of device may be defined as an MQTT client. It is 

indeed the receiver and/or sender of messages. The client is responsible for subscribing 

or publishing a topic. It also defines the payload format and the quality of service (Chapter 

2.2.4) to send the message with. As specified in the introduction, MQTT deals optimally 

with constrained devices which do not offer high performances. This feature fits perfectly 

with the operation required by MQTT. 

b) MQTT Broker 

Acting as a distribution server, the MQTT broker is a central entity between the clients. It 

acts as a hub and its main task is to forward messages to the client. The condition of 

letting a packet through is to verify if the receiver is subscribed to the related topic. 

c) MQTT’s Architecture 

Any MQTT topology includes at least two clients as well as one broker. Figure 2.14 takes 

in account a scenario with a broker in the middle and different subscribers and publisher 

depicted as devices or clients. The curtains’ actuator which is interested the light status 

inside the kitchen subscribes to the topic kitchen/light. After the subscription the actuator 

will be notified every time the light sensor in the kitchen reaches or passes a certain value 
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in order to close the curtains. This happens because the kitchen’s light sensor will 

constantly notify a new value through the kitchen/light topic. The same holds true for 

kitchen’s main lamp which wants to know as soon as the room becomes dark and the 

curtains are not closed. Finally, also the light sensor receives the status of the lamp 

through the kitchen/lamp topic in order to know whether the brightness was caused by 

the lamp itself or not. Please notice that clients may be publishers and subscribers at the 

same time. 

 

Figure 2.14: Example of an MQTT Architecture 

2.2.3 MQTT Control Packet format 

A packet exchanged under MQTT is divided into three parts: fixed header, variable 

header, and payload. The latter is not necessarily present in every MQTT packet [9, p. 

21].  

 

Figure 2.15: MQTT Control Packet Format [9, p. 21] 

a) Fixed Header 

As depicted in Figure 2.16, the fixed header consists of 2 bytes divided in this way: the 

first byte is divided equally between control packet type and flag specific to the control 

packet type; the second one corresponds to the remaining length. An overview about the 

components consist of [9, pp. 21-23]:  
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• Control packet type: this is the type of message sent. Some of the types in-

cluded are: CONNECT, CONNACK, PUBLISH, PUBACK, SUBSCRIBE, 

SUBACK, DISCONNECT and AUTH  

• Flag specific to the control packet type: as of MQTT 5 this is just relevant when 

associated to a PUBLISH packet type. It refers to the Duplicate delivery of a 

PUBLISH packet (DUP), PUBLISH Quality of Service (QoS) and PUBLISH re-

tained message flag (RETAIN) 

• Remaining length: it is equal to the remaining bytes between the fixed header, 

including the effectively taken bytes in the variable header for encoding, and the 

payload 

 

Figure 2.16: Fixed Header [9, p. 21] 

b) Variable Header 

The MQTT variable header consist of a two-byte integer packet identifier plus two byte 

variable length divided between property length and property [9, pp. 23-26]: 

• Property Length: it specifies the length of the property field by defining a variable 

byte integer 

• Property: it is also represented by a variable byte integer and for each hexadeci-

mal value it identifies a usage, data type and the packet for which it may be re-

quired. An example of property is the reason code in the newly introduced 

MQTT 5. Table 2.2 reports some of the properties. 

Hex Usage Type Packet 

0x0B Subscription Identifier Variable Byte Integer PUBLISH, SUBSCRIBE 

0x1F Reason String UTF-8 Encoded String CONNACK, PUBACK, PUBREC,  

PUBREL, PUBCOMP, SUBACK,  

UNSUBACK, DISCONNECT, AUTH 

0x27 Maximum Packet Size Four Byte Integer CONNECT, CONNACK 

Table 2.2: Example of Properties [9, pp. 25-26] 

c) Payload 

Finally, the payload contains the data any subscriber is interested in. Just some packet 

types require it: CONNECT, SUBSCRIBE, SUBACK, UNSUBSCRIBE and UNSUBACK 

[9, pp. 26-27]. 
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2.2.4 MQTT Quality of Service (QoS) 

Since MQTT may rely on TCP/IP, a connection-oriented transport protocol, it also can 

count on a certain level of consistency. In fact, TCP’s three-way-handshake ensures that 

the message arrives at the destination by delivering an acknowledgement to the sender. 

This is true for a topology involving to two entities, client, and server. MQTT on the other 

hand has a minimum network composition of two clients plus a broker/server. In this case 

the number of the messages needed for a PUBLISH increase proportionally with the 

number of subscribers involved. Especially for a protocol designed for constrained 

devices with a small battery like MQTT, it is fundamental to keep the number of packets 

as small as possible. In order to achieve this, the standard introduces different QoS levels 

which denote how many times a subscriber receives a particular message. The client is 

responsible for defining the QoS for a specific subscription or publication. This means 

that a hypothetical communication involving one publisher and one subscriber, if the first 

sets an higher QoS than the second, the broker will downgrade the QoS level choosing 

the lower one [9, p. 76]. Notice that by controlling the QoS within MQTT there is no change 

in how the underlying protocol works including error detections or error corrections [13, 

p. 13]. 

a) At most once – QoS 0 

In very stable network condition or when the user wants to preserver the devices’ battery-

life, the MQTT messages may be transmitted with QoS 0. At least once means that the 

payload is sent to the subscriber only and at most once, it is not stored, and no 

confirmation is sent to the publisher. The terms “fire and forget” is often used to define 

this behavior since the MQTT network may just lose track of the message [14]. 

b) At least once – QoS 1 

This is the default QoS in MQTT. It consists in delivering the message to the subscriber 

at least once. If the sender does not receive any confirmation of reception by the receiver 

it will generate a duplicate message adding the DUP flag in the packet. While waiting for 

the acknowledgement other devices may take initiative and publish payloads the previous 

mentioned receiver is subscribed to. This would cause multiple incoming messages by 

the subscriber and acknowledgements would eventually get lost. Therefore, it is possible 

that duplicate messages may arrive. This is why QoS 1 is referred as at least once [14]. 

This level is for scenarios where device can deal with duplicates or where there is a need 

of balance between speed and delivery reliability. 

c) Exactly once – QoS 2 

When the overhead is not relevant and it is fundamental that clients do not receive 

duplicates, QoS 2 ensures an accurate transmission. In fact, like Figure 2.17 describes 

there are two rounds of transmission. The first one happens in a similar way as in QoS 

1, where the publisher waits for acknowledgement. In this case however, the publisher 

stores the message and waits before taking further actions. Only after the 

acknowledgment (PUBREC) the second round takes place: the publisher sends a 

confirmation (PUBREL) for allowing the subscriber to process the data. Then the sender 

waits for the subscriber’s acknowledgement to this second round (PUBCOMP) and only 

after receiving it, it deletes the stored message. Notice that the receiver keeps a reference 

of the packet identifier to avoid processing the data for the second time in case another 

PUBCOMP would arrive. [14, 15]. 
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Figure 2.17: QoS 2 workflow 

2.2.5 Security 

"MQTT is a transport protocol specification for message transmission, allowing 

implementers a choice of network, privacy, authentication and authorization technologies. 

Since the exact security technologies chosen will be context specific, it is the 

implementer's responsibility to include the appropriate features as part of their design" [9, 

p. 111]. This is the first statement of MQTT 5 security’s Chapter in the specification and 

gives a clear understanding about MQTT’s strategy: the implementer is the one who is 

responsible for enhancing its solution’s security. This allows a certain freedom in 

choosing a use-case specific environment but leaves at the same time any default 

implementation without neither authentication nor authorization mechanisms. A non-

secured MQTT’s configuration has the following vulnerabilities [16]: 

• Lack of robust authentication: MQTT’s standard includes the possibility of using 

a username and password for authentication. Until version 3.1.1 these were part 

of the CONNECT message in plain text allowing the client to authenticate the 

broker and vice versa. MQTT 5 newly introduced the AUTH message (also con-

figurable): client and broker first verify the dually supported authentication 

method by inserting the property field in the CONNECT and CONNACK mes-

sages. After, by exchanging AUTH packet types they authenticate each other 

with the credentials which are unlike in version 3.1.1 sent in form of tokens and 

not anymore in plain text. The choice of the authentication method is not limited: 

MQTT’s standard mentions SCRAM and Kerberos but there is no restriction [9, 

pp. 106-108]. The AUTH message is enhancing the solution’s security but still 

does not force the developer to include authentication methods within a secure 

communication protocol like TLS and SSL. Also, the support of those methods is 

highly dependent on the device’s capabilities 

• Lack of robust authorization: after authenticating the broker, clients are by de-

fault allowed to subscribe or publish on any topic they want without any re-

strictions. The broker is itself responsible for consenting clients to use certain 

topics. One solution may be topic permissions on broker side where restrictions 

may occur; but again, this is not included in a non-configured solution 

• Lack of confidentiality: MQTT operates by default thanks to unencrypted 

transport protocols like TCP. This leaves any communication easily readable for 

any attacker. Any tool for packet tracing would be sufficient to read the payloads 

between client and broker. The most immediate solution would be using TLS 

• Lack of integrity: as for lack of confidentiality the problem here lies in the unse-

cured transport protocol. Any TCP communication may be in fact easily modified 
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by unauthorized clients using unauthorized topics. A resolving method would be 

the integration of Checksums, MAC, or digital signatures in the protocol 

A possible configuration of security mechanisms within MQTT at different OSI layers 

would include: 

• Network layer: VPN 

• Transport layer: SSL/TLS using PSK or certificates 

• Application level: username/password credentials with AUTH method in MQTT 5 

and broker topics authorization 

2.3 LTE-M 

LTE for Machine-Type Communication (LTE-M) is a variant of LTE with the following 

attributes: 

• Modem and Equipment Cost reduction 

• Coverage enhancement 

• Improved devices’ lifetime 

• Scaling LTE devices 

2.3.1 Deployment flexibility 

3GPP’s releases 12, 13 and 14 gradually introduced Long Term Evolution features 

supporting Machine-Type Communication (MTC) and IoT. Release 12 introduced Cat-0, 

an initial study on how to enhance coverage for MTC User Equipment (UE). Release 13 

focused on the physical layer and presented Coverage Enhancement (CE) A and B 

modes; devices following this specification are called Cat-M1. Finally, Release 14 and 

more recent ones improved performances specifying Cat-M2 devices. The purposes of 

these new releases were to decrease LTE costs for MTC (LTE-M). Cat-0 modem costs 

had to be reduced by 1/3 by reaching the following compromises: reduced peak rates, 

single receive antenna, half-duplex operation, reduced bandwidth (BW), and reduced 

maximum transmit power. For example, Release 12 goals was to reduce UL and DL data 

rate from 5Mbps and 10Mbps (Cat-0 UL and DL) to 1Mbps. On the other hand, Cat-M1 

operates with reduced BW (from 20 MHz in Cat-0 to 1.4 MHz) and lower power class 

(from 23 dBm to 20 dBm). Another important goal was to achieve CE. Less stringent data 

rates and latency requirements allow to increase the coverage thanks to retransmission 

and repetition techniques. CE Mode A and B should help reaching a 20 dB CE. Along the 

already mentioned aspects, 3GPP achieved an improved devices’ lifetime by introducing 

Power Saving Modes (PSM) techniques as well as with the enhanced Extended 

Discontinuous Reception (eDRX). Moreover, Radio Resource Control (RRC) 

Suspend/Resume techniques helps reducing signaling after reconnection between UE 

and BSS allowing an easier machine scalability. Finally, LTE-M deployment is easy due 

to the adaptability to the already existing LTE network. Shared resources as well as LTE 

less busy traffic periods are vital for the Cat-M expansion. [17, pp. 137-139] 
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2.3.2 Design Structure 

a) LTE E-UTRAN and EPC Architecture 

 

Figure 2.18: LTE Architecture 

As LTE remains the base for LTE-M (and later on for NB-IoT) Figure 2.18 gives an 

overview of a simplified LTE network Architecture. One the left the UE or device 

communicates wirelessly with the eNodeB, contained in the base station (BS), which is a 

physical entity giving access to the LTE network. eNodeBs not only corresponds with the 

device but also with each other. The Evolved Universal Terrestrial Radio Access Network 

(E-UTRAN) represents the cellular physical access and interfaces. The successive high-

level component is called Enhanced Packet Core (EPC). This is the core network of the 

architecture and contains the Mobility Management Entity (MME), Serving Gateway (S-

GW), Packet Data Network Gateway (P-GW), Home Subscriber Server (HSS) as well as 

the Policy and Charging Rules Function (PCRF). The MME is the control interface 

between EPC and eNodeB. It is responsible for the signaling of the UE or eNodeB 

towards the EPC and it also allocates the gateways for accessing the internet. MME has 

also a security role: it generates temporary identifications for the UEs, authorizes the 

device to use the service provider’s network, controls the roaming authorization and 

manages the key distribution center. Next to the MME, the HSS is a database which 

contains subscription-related data: every SIM or eSIM card is authenticated and 

authorized by consulting the HSS. The S-GW make sure to maintain the network session 

during handovers between eNodeBs as well as between LTE and other kind of cellular 

networks. It also generates paging requests towards the UE (for more information about 

paging please visit Chapter 2.3.8). Nevertheless, the P-GW represents the real point of 

entry for traffic incoming from and outgoing other packet data networks. A UE may be 

connected to more P-GW as the device creates more sessions with more different 

networks. Finally, the PCRF is responsible for service policy and Quality of Service (QoS). 

After SIP session is established it allows or rejects the media request, controls the 

allocation policies for a certain resource and manages the Packet Data Protocol (PDP) 

context for a new request. The traffic is in the end directed from the EPC to the external 

IP Networks [18].  

b) Frames and PRBs Architectures 

LTE-M keeps the same physical layer design as LTE. OFDM in DL and SC-FDMA in UL 

are still present. The modulation schemes are QPSK and 16QAM. Also, the frame and 

Physical Resource Block (PRB) architecture is the same as LTE. Referring to Figure 2.19 

on top there are 1024 hyperframes, each of those is divided in other 1024 frames which 

contain 10 subframes each. These are then divided into two slots; each of them has a 
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duration of 0.5 seconds and represents from 6 to 7 OFMD symbols depending on the 

Cyclic Prefix (CP): normal CP supports a 4.7 µs propagation delay while extended CP up 

to 16.7 µs (rarely used). 

 

Figure 2.19: LTE and LTE-M frame architecture [17, p. 140] 

As described in Figure 2.20 one LTE-M’s PRB contains 12 subcarriers whose subcarrier 

spacing is 15 kHz representing a total of 180 kHz. One subframe slot has then 6 to 7 

PRBs (in this case 6). [17, pp. 140-142] 

 

Figure 2.20: LTE and LTE-M PRB and subframe relationship [17, p. 141] 
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2.3.3 Duplex Mode 

Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are part of LTE-M. 

Here we can find the distinction between Full-Duplex (FD) where UL and DL happen at 

the same time, and Half-Duplex (HD) where UL and DL are separated. The latter may 

functionate using a double oscillator for carrier frequency generation (Type A) or a sin-

gle one (Type B). LTE-M and Cat-0 devices use Type B HDD in line with the objective 

of lowering MTC costs. To resolve issues caused by a slow reference-frequency switch-

ing in the oscillator, LTE-M ensures for Type B devices a guard interval between UL 

and DL and vice versa. Regarding FDD, UL and DL take place in the same carrier fre-

quency but in different time-periods. A special subframe (similar to guard interval) helps 

switching between DL and UL. The other way around is not necessary: the eNB is the 

only entity transmitting in DL and can therefore plan the users DL periods; on the other 

hand, during UL in order to synchronize the users it requires extra-time given by the 

special subframe. Nevertheless, as a matter of a cost/performance trade-off, the manu-

facturer may choose between FD or HD (Type B) -FDD or TDD. [17, p. 142] 

2.3.4 Narrowbands 

LTE operates in the system bandwidths 1.4, 3, 5, 10, 15 and 20 MHz. It holds a maximum 

of 100 PRBs for 18 MHz. LTE-M Bandwidth-reduced Low-complexity (BL) devices on the 

other hand, only support 6 PRBs channels. This means that the LTE bands are by 

occurrence divided into multiple narrowbands. This requirements show the 

interoperability between the two standards: LTE-M Cat M1 uses indeed 1.4 MHz 

narrowbands (Cat M2 and non-BL 5 MHz) within higher LTE BWs. Table 2.3 shows for 

example that the LTE 10 MHz BWs has 8 narrowbands, the 15 MHz 12 and so on. Since 

in almost all of LTE regular BWs there is not an even number of narrowbands, some 

PRBs are not used for LTE-M data transmission: these are reported in the last column of 

Table 2.3. They may be utilized "for LTE-M related transmissions on other physical 

channels/signals and for any ordinary LTE transmissions in the cell" as well as for NB-

IoT anchor and non-anchors carriers as also reported in Chapter 2.4.2 [17, p. 144]. 

LTE Band-

widths 

Number of 

PRBs 

Number of Narrowbands PRB not party of Narrow-

bands 

1.4 6 1 None 

3 15 2 3 = edges + center 

5 25 4 1 = center 

10 50 8 2 = edges 

15 75 12 3 = edges + center 

20 100 16 4 = edges x 2 

Table 2.3: LTE-M Narrowbands and PRBs not belonging to any Narrowbands [17, p. 143] 

2.3.5 CE Modes 

LTE-M coverage enhancements are a direct consequence of the reduced requirements 

in terms of maximum signal power and number of antennas for Cat-M devices. The uses-

cases are also often related to rural landscapes as well as basements and other locations 

where the coverage may not be optimal. For all these reasons 3GPP decided first to 

introduce CE mode A to close the gap with LTE devices performances and subsequently 

mode B to extend the use-cases. Mode A supports up to 32 subframe repetitions of the 
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data channel and is obligatory on Cat-M1 and -M2 devices. Mode B goes up to 2048 

repetitions and is not mandatory on all devices; this mode allows reaching a coverage 

target of 20 dB. Cat-0 and -1 modems may optionally have one or more modes. 

2.3.6 Idle Mode 

When the device is neither transmitting nor receiving data it finds himself in one idle 

mode. This state indicates that there is no DL or UL operation: the modem is either busy 

in finding and/or synchronizing with a cell or in a complete inactive phase. The first case 

is about the cell selection and the consequent system information acquisition. The second 

one includes power saving techniques like eDRX and PSM. 

2.3.7 Cell Selection, Reselection and System Information Acquisition 

When an LTE Cat-M modem is powered up it starts searching for an LTE cell nearby to 

synchronize time and frequency with the carrier signal. Here the Primary Synchronization 

Signal (PSS) is transmitted every 5 ms in the 62 central subcarriers and returns the carrier 

frequency error (CFO). Since LTE-M deals with low-cost IoT devices with less effective 

oscillators, the CFO has large values for the initial cell selection: the imprecision "may be 

as high as 20 ppm (parts per million), corresponding to, for example, 18 kHz initial CFO 

for a 900-MHz band" [17, p. 167]. Therefore, LTE-M devices have a relatively high power-

consuming performance during the initial cell selection rather in the reselection or non-

initial selection phases. In a successive moment, the Secondary Synchronization Signal 

helps identifying the Cyclic Prefix (CP) that may be normal or extended and the duplex 

mode, either FDD or TDD. Along with this, the UE collects the DL system BW as well as 

the information scheduler for the System Information Block (SIB). LTE-M uses a special 

kind of SIB called Bandwidth Reduced (BR) that contains among others information about 

other frequencies and interfrequency neighboring cells relevant for LTE, UMTS 3G, GSM 

and CDMA2000 3G cell reselection [17, p. 170]. The Base Station (BS) is also acquiring 

data about the UE: country, cell reservation information, minimum required Reference 

Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ). These 

information also ensure LTE-M devices to support mobility: during cell reselection UEs 

can select a new BS based on the RSRP calculation. 

2.3.8 eDRX 

During the idle state, the network periodically monitors the UE’s state by an action called 

paging. The BS transmits paging records to all the devices connected to the narrowband. 

Every endpoint then controls if its Temporary Mobile Subscriber Identity (TMSI) or the 

International Mobile Subscriber Identity (IMSI) corresponds to the one contained in the 

paging message. If yes, the device initiates a connection with the cell. As a result, this 

procedure impacts on the battery-life duration as well as on the DL data rate. The solution 

is the extended discontinuous reception (eDRX), a cyclic event period dedicated to 

paging. The minimum eDRX period in LTE-M in both idle and connected states is 2.56 s 

while the maximum is 44 min in idle and 10.24 s in connected mode (when data 

transmission takes place). After this cycle occurs the UE opens a time-frame (maximum 

20.48 s) in which it accepts paging records. For NB-IoT there are slight changes: for DRX 

(a previous version of eDRX) the longest cycle corresponds 10.24 s while in eDRX the 

maximum is 2h, 54 min and 46s (one hyperframe). Figure 2.21 represents on the lower 

part the eDRX cycle and above the paging windows which appear as soon as the device 

wakes up and enters the idle mode. The Mobile Management Entity (MME) is responsible 

for choosing the paging strategy: if based on the BS paging history the UE is not easily 
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reachable (i.e. located in a basement) the MME may decide to include repetitions for the 

transmission. This, on the other hand, is difficult for moving devices since the MME 

cannot rely on a cell-related paging history. In this case the device becomes responsible 

to generate MO traffic to support the MME. 

 

Figure 2.21: eDRX cycle and paging 

2.3.9 DRX and RRC Inactivity Timer 

When the UE is in connected mode and a data exchange occurs the successive transition 

into idle mode does not take place immediately. There is a time-frame when the eNodeB 

does not know if the UE will continue transmit data or stop for a longer period. Therefore, 

as illustrated in Figure 2.22 the RRC inactivity timer takes place. This is divided into DRX 

inactivity timer with a persistent active state followed by short and long DRX timer cycles. 

These are different than the regular DRX cycles (which only exist in idle mode) since the 

paging windows are now substituted by active states where the UE could instantly handle 

upload and download. Every provider in the world decides independently the RRC 

inactivity timer duration and composition. Some of them for example completely eliminate 

the DRX timers or only keep the long DRX timer. Also, the DRX inactivity timer duration 

variates between carriers. Nevertheless, the choice of these parameter may influence the 

devices’ battery-life. For this purpose, modems’ manufacturers started to introduce the 

so-called Release Assistant Indication (RAI) where the UE may signalize when the data 

transmission is over. This option is however still very limited within both modems and 

providers network. Moreover, it is mostly supported only within NB-IoT, at least in the EU. 

 

Figure 2.22: DRX and RRC Inactivity Timer 
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2.3.10  Power Saving Mode 

Between the end-paging windows and the next eDRX cycle the user may decide to 

activate a time period where the device sleeps. This is part of the Power Saving Mode 

(PSM) settings, a feature present in all 3GPP IoT cellular standards. PSM is suitable for 

use-cases where a UE does not require data DL or UL for long time-periods (hours, days, 

months) and can therefore enhance its battery performances. Both GSM/EDGE and LTE 

incorporate PSM which devices use to drastically minimize their power consumption. 

Figure 2.23 depicts the PSM as the period where no communication takes place; at the 

bottom you can notice its time-frame taking place between the end of the idle mode and 

the beginning of the connected mode. PSM differs indeed from the idle state where 

paging is still considered: here any MT traffic remains ignored since no UE’s component, 

but an internal timer, is active. The integrated clock helps to enter and leave the PSM 

mode. MO communications are the only exception for the device to leave PSM. There 

are three scenarios for which the EU may perform MO UL: data-transfer, Tracking Area 

Update (TAU) and Routing Area Update (RAU). These last two take place periodically 

and are fundamental to allow a temporary active state when the device accepts MT traffic. 

In LTE-M and NB-IoT TAU and RAU cycles may be between seconds and an entire year 

[17, p. 21]. After TAU and/or RAU, the eDRX (described in Chapter 2.3.8) and paging 

periods take place after which the active internal timer trigger the sleeping mode again. 

In PSM the UE remains registered to the BS allowing a lightweight wake-up signaling. 

The PSM benefits may immediately disappear if the device moves frequently and needs 

a new cell selection with consequent registration and attachment. These operations 

require much more power than RAU/TAU and have to be limited as much as possible to 

ensure UE’s longevity. 

 

Figure 2.23: PSM cycle in combination with eDRX 
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2.4 NB-IoT 

3GPP’s release 13 was characterized by a study called “Cellular System Support for 

Ultra-low Complexity and Low Throughput Internet of Things” [19] which theorized a new 

IoT cellular standard with objectives similar to LTE-M: improved coverage, capacity, 

battery lifetime together will less stringent latency time than Cat M devices and lower 

device costs. Another important goal was to reutilize GSM and LTE spectra in order to 

avoid new networks and infrastructure which are normally expensive and complex to 

build. Narrowband Internet of Things (NB-IoT) is therefore the outcome of this. Tackling 

the devices’ complexity and cost, 3GPP decided to relax the base-band operations by 

searching for only one synchronization sequence using a lower sampling rate (e.g. 240 

kHz) when coupling time and frequency with the network [17, p. 220]. Moreover, in the 

channel coding NB-IoT abandons LTE’s turbo codes and instead opts for simple 

convolutional codes like tail-biting (TBCC) in DL. Also, modulations schemes are only of 

low-order and not multilayer MIMO anymore, just supporting half-duplex to separate DL 

and UL operations to reduce hardware’s complexity. Avoiding MIMO also means one 

single antenna required allowing a higher oscillator inaccuracy reaching 20 ppm (like in 

LTE-M). As in LTE-M, devices’ transmit power level is limited to either 20 or 23 dBm, on-

chip Power Amplifiers (PA) become beneficial [17, p. 221]. In terms of Coverage 

Enhancement (CE) since NB-IoT relies on QPSK and BPSK in the UL channel its 

waveform maintains a close to constant envelope in UL. This is particularly important 

because the PA may work at the maximum level without the need of a power back-off 

and the coverage takes advantage out of this. This aspect is then sustained by repetitions 

and smaller data rates. Also, the battery lifetime benefits in terms of efficiency out of the 

minimized PA’s power back-off. PSM, eDRX and connected mode DRX (cDRX) are 

different options to keep the power consumption low. The next section gives a theoretical 

background regarding why bandwidths play a small role in bad coverage conditions. 

2.4.1 Small Bandwidths and bad coverage 

Shannon’s capacity theorem states a clear relationship between power, noise, 

bandwidth, and capacity: 

 𝐶 = 𝑊 log2 (1 +
𝑆

𝑁
) = 𝑊 log2 (1 +

𝑆

𝑁0𝑊
) (1.2.4.1) 

where 𝐶 is the channel capacity, 𝑆 the signal power, 𝑁 the noise power, 𝑊 the noise 

bandwidth and 𝑁0 the one-sided noise spectral density. Notice that the noise bandwidth 

is equal to the signal bandwidth if Nyquist’s 1st criterion is applied. Moreover, for bad 

coverage 
𝑆

𝑁
≪ 1 and using the approximation ln(1 + 𝑥) ≈ 𝑥 for 𝑥 ≪ 1: 

 𝐶 =
𝑆

𝑁0
log2(𝑒) (2.2.4.1) 

This shows that the capacity (or also the data rate) only depends on the signal power (the 

noise power is usually not adjustable). The bandwidth vanishes and does not play any 

role with bad signal coverage. This is particularly significant and indicates that it is 

possible and advisable to allocate small bandwidth when a device utilized the UL channel. 

As it will follow NB-IoT uses 180 kHz bandwidth for good coverage but the situation 

changes when the signal conditions change [17, pp. 221-222]. 
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2.4.2 Operations Mode 

NB-IoT comes with three different deployments methods: stand-alone, in-band and 

guard-band. This aspect is relevant to save costs and complexity from creating a new 

infrastructure. The goal here is to use either refarmed GSM or LTE bands. 

a) Stand-alone 

It is possible to deploy a stand-alone NB-IoT band by refarming for example part of the 

GSM spectrum. According to 3GPP’s requirements [20], a guard-band between the GSM 

and the NB-IoT carrier must exist. This band is recommended to be 100 kHz between 

GSM and NB-IoT spectra belonging to the same operator while 200 kHz if two providers 

are involved. This means that not only the operator needs to refarm one GSM carrier for 

NB-IoT’s deployment, but it would require an additional one and half for the guard-band. 

The upper part of Figure 2.24 takes in consideration a 200 kHz GSM carriers whose 

operator decides to introduce cIoT bands. The new NB-IoT band must be integrated in 

the entire 200 kHz band even though it is just 180 kHz wide. Therefore, beneath operator 

number 2 inserts a 100 kHz guard-band next to the regular GSM carrier as well as 200 

kHz between operator number 1 and itself. Refarming GSM with the stand-alone 

deployment may result in a temporary loss of spectra and overall band inefficiency. 

Nevertheless, on a long-term GSM to LTE (or to 5G) migration plan it turns out to be 

particularly convenient. The momentary stand-alone deployments may become in-band 

or guard-band, allowing a step by step GSM refarming (please for more information refer 

to the next two subchapters) [17, pp. 222-223]. 

 

Figure 2.24: NB-IoT stand-alone band in GSM refarmed 

b) In-Band 

An in-band NB-IoT deployment takes place either directly on an LTE PRB or on an LTE-

M unused narrowband. The first option depicted in Figure 2.25 on the left consists in 

substituting a PRB within an arbitrary LTE band with a NB-IoT 180 kHz wide carrier. On 

the other hand, the second possibility involves LTE-M features previously explained in 

Chapter 2.3.5. Because LTE-M narrowbands are mode of 6 PRB, they are inserted within 

LTE carriers. Depending on the LTE BW, LTE-M manages to fill them according to Table 

2.3, i.e. 1 narrowband in the 1.4 MHz BW or 16 in the 20 MHz. Since almost in all of the 

LTE BW there is more than a multiple of 6 PRBs available there are some PRBs left 
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which do not belong to any narrowband. Therefore, these may be used for an in-band 

NB-IoT deployment. As a consequence, new restrictions and challenges regarding the 

coexistence of NB-IoT, LTE-M and LTE raise; these will be described in the next Chapters 

[17, p. 223]. 

c) Guard-Band 

As the in-band deployment does, also guard-band’s refers to LTE. In the scenario 

presented in Figure 2.25 on the right, NB-IoT reutilized LTE’s guard-bands left at the 

edges of the carrier. Based on the fact that 5% of the LTE BWs 3, 5, 10, 15 and 20 MHz 

is made of guard-bands on each side, NB-IoT may again insert its 180kHz carrier at the 

carrier’s borders [17, p. 223]. 

 

Figure 2.25: NB-IoT In-Band and Guard-band Deployment 

2.4.3 LTE and NB-IoT coexistence challenges 

NB-IoT deployment in form of in-band and guard-band within the LTE spectrum creates 

new complexity and possible inconveniences. First of all, 3GPP allows the existence of 

an NB-IoT PRB next to an LTE’s without any guard-band in between. This requirement 

seems even more ambitious since the system must keep LTE’s orthogonality avoiding 

any Inter Symbol Interference (ISI). Moreover, NB-IoT carriers "share the same time-

frequency resource grids as LTE the same way as different LTE physical channels share 

time-frequency resources" [17, p. 225]. This implies a complete integration not only within 

the same BW but also with external channels and causes a restricted access to the PRB 

schema to the NB-IoT resource elements (RE). The Physical Downlink Control Channel 

(PDCHH) for example avoids NB-IoT of taking the first three REs OFDM symbols in every 

subframe. The same happens for other LTE physical channels and signals like Channel 

State Information Reference Signal (CSI-RS) or the Primary Synchronization Signal 

(PSS). 

2.4.4 Cell Selection, Reselection and System Information Acquisition 

The process of collecting and exchange information by the modem before entering the 

connection mode require the same step as described for LTE-M in chapter 2.4.4. 

2.4.5 eDRX and Power Saving Mode 

As EC-GSM and LTE-M do, also NB-IoT incorporates 3GPP’s power saving techniques. 

The first one is DRX and later its evolved version or eDRX. In this case the functionalities 

are very similar to LTE-M as described in Chapter 2.3.8 and 2.3.9. The difference is that 

the maximum cycle period in DRX corresponds to 10.24 s while in eDRX it becomes 

equal to 2h, 54 min and 46s (one hyperframe). Regarding PSM, the backgrounds remain 
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the same and Figure 2.23 in Chapter 2.3.10 gives an overview about its typical behavior 

in the time-domain. 
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3 Comparisons 

This Chapter summarizes the most important concepts presented in Chapter 0 and draws 

a comparison between LwM2M and MQTT as well as LTE-M and NB-IoT. 

3.1 LwM2M and MQTT 

Modern IoT protocols were born to extend transport protocols such as TCP and UDP. 

The requirement was to add a minimum amount of logic allowing devices to communicate 

adding the least possible overhead. This is one of the reason why MQTT was conceived 

to be so skeletal: its specification does not define any security mechanism as same goes 

with the payload which is not imposed [9]. The developer is indeed in charge of designing 

the application on a higher level. A lot of MQTT projects like Mosquitto for example use 

TLS as the security level for the encryption and AWS IoT Core gives the possibility of 

choosing JSON to encode the payload. This results in a vast freedom in regard to the 

use-case but does not give a guideline for a robust solution. In the end MQTT defines a 

minimum valuable protocol that is extremely versatile and is reliable for delivering IoT 

from client to client. Else ways when speaking about LwM2M, the concept of device 

management protocol fits the best. It locates on top of the so-called IoT messaging 

protocols such as MQTT and CoAP, by delivering all their features plus well-defined 

security and data model concepts. Topics like Bootstrap and Objects (Chapters 2.1.3 and 

2.1.7) help the user/customer investing a much lower amount of time and resources than 

taking a lower protocol and defining an appropriate logic for a specific use-case. 

Therefore, MQTT and LwM2M represent different but at the same time also coexisting 

protocols: different because they are on two diverse layers and coexisting since LwM2M 

may also adopt MQTT as the underlying messaging protocol (2.1.1). Nevertheless, it 

makes sense to compare each other because user may still decide in favor of one of the 

other: either adapting and creating an own solution with device management features 

starting from MQTT or directly adopting a ready one like LwM2M and do minimal 

changes. Below the text highlights the main differences between the two protocols. Table 

3.1 delivers a first overview on the two IoT protocols. 

Feature LwM2M MQTT 

Transport Protocol CoAP, MQTT, SMS, NIDD TCP, SSL, WebSocket 

Communication 

Type 

Server-Client Client-Broker-Client 

Data Format TLV, CBOR, JSON, SenML JSON, plain 

text etc. 

Out-of-Scope 

Security DTLS, TLS Out-of-Scope 

Protocol Type Device Management Messaging 

Reliability CoAP CON and NON QoS 0,1,2 

Data Model Objects and Resources Out-of-Scope 

Table 3.1: LwM2M vs MQTT 
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3.1.1 Protocol Stack 

MQTT is relying on TCP/IP or WebSocket as its underlining protocol being effectively a 

connection-oriented protocol. This choice is then abstracted through the Quality of 

Service (QoS) levels: QoS 0 as a fire and forget method to use as less packets as 

possible when publishing a message, QoS 1 delivering an extra confirmation of success 

when sending a message but without avoiding possible duplicates and QoS 2 delivering 

both consistency when publishing and absence of duplicates at the same time. This is an 

expedient to decide different level of complexities and overhead based on the use-case. 

LwM2M on the other hand, because it primarily bases on CoAP and UDP, has less 

freedom in adapting the QoS. CoAP gives the possibility of choosing between a 

confirmable (CON) and a non-confirmable (NON) message. The first is the more reliable 

between the two since the server either sends back an ACK if the CON was successfully 

delivered or an RST if there were problem in handling the message. The NON represents 

the pure UDP connectionless message which does not require any confirmation. This is 

optimal on a power consumption and overhead perspective and is the most efficient way 

of communicating for constrained devices. When dealing with high payloads, due to 

firmware updates for example, CoAP and therefore LwM2M splits the content of one 

single message into multiple packets. This operation is called Block-Wise Transfer 

(BWT). In contrast to MQTT, where TCP performs the segmenting and resequencing out-

of-the-box, CoAP can rely on UDP just for fragmentation [21]. Therefore, CoAP becomes 

responsible for dividing the packets, as soon as the block size reaches 1024 bytes, and 

makes sure that they arrive at destination. The BWT is the solution of this challenge and 

uses CON messages to acknowledge the different chunks. 

3.1.2 Security 

One of LwM2M’s main feature is the Bootstrap Server. It acts as key distribution center 

and delivers authentication credentials to the client in order to start communicating with 

the server. LwM2M also include the possibility of bypassing the Bootstrap Server by 

performing a factory or smartcard bootstrap that would help reducing the initial connection 

overhead when exchanging the keys. The specification also reports the supported 

underlying security protocols. Since this thesis’ evaluation focuses on CoAP and UDP 

when dealing with LwM2M, DTLS is the natural choice for the encryption of messaged in 

this case. As mentioned in Chapter 2.1.8 the security object specifies the DTLS mode 

used: pre-shared key (PSK), raw public key (RPK), certificates (Cert), no security (noSec) 

and certificates with enrolment over secure transport (EST). This range of possibilities 

shows the deep integration between DTLS and LwM2M. Also, the DTLS 1.2 Connection 

ID (CID) is essential for sleeping devices (Chapter 2.1.9) and proves one more time how 

the device management protocol relies and specifies recommended security solutions. A 

client may also use Access Control Lists (ACL) to prevent servers to read/write/execute 

certain objects and resources. MQTT, on the other hand decides to abstract any security 

mechanism limiting itself to just suggesting the most suitable ones: SSL and TLS. Related 

open-source projects like Eclipse Mosquitto for example, include TLS help functions in 

order to establish an authentication either via PSK or Cert with the ciphers defined by 

OpenSSL1. Nevertheless, the specification only defines an authentication method via 

username and password which is however transmitted in plain text between broker and 

client and in any way encrypted. Only MQTT version 5 introduces a tokenized way of 

providing encryption. Finally, the broker may consent or prohibit clients of publishing and 

subscribing to certain topics. 

 

1 Toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols 
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3.1.3 Formats and Data Model 

As mentioned in the introduction to this Chapter the MQTT specification does not define 

any specific format for the protocol. One of the most used solution adopted by open-

source projects is sending the payload as plain text or JSON for further data management 

or storing. This may not be the best choice in terms of message size: TLV, SenML JSON 

and CBOR are preferred to maintain a limited payload dimension. LwM2M supports all of 

these because as a device management protocol tends to deliver ready-to-use data for 

further applications in the back-end and at the same time tends to keep the messages as 

lightweight as possible. Data Model is another crucial aspect for back-end solutions. The 

more organized the data arrive the better may DBs and data management platforms 

handle those. MQTT leaves this task to the user by not providing specific data structure 

to payloads. The pros of this include freedom in modelling resources. LwM2M has 

contrarily the opposite approach: depending on the use-case the user must choose one 

more or more given objects and resources (see Chapter 2.1.7). OMA provides a registry 

with all of the different possibilities. The benefit here is a tidy and minimalistic way to 

define use-cases reducing once again the deployment complexity. 

3.1.4 Deployment and Scalability 

Deploying a LwM2M topology means having to deal at least with two entities: one server 

and one client. The active part is the server which requests and retrieves data from the 

client. This solution helps on one side reducing the computational resources since only 

two actors are at least involved, but on the other causes unwanted data traffic. This is the 

case for example when a client just wants to communicate sensor data. Until LwM2M 

version 1.1 the server would have to request an observe operation, before receiving the 

actual sensor data through notifications, causing a bidirectional flow. Since version 1.2, 

the specification also include the unidirectional Send operation by the client (for more 

information please refer to Chapter 2.1.6). Scalability may be also a designing issue. 

Although some open-source LwM2M projects like Leshan (see next section), include an 

example of servers’ clusters for deployment in scalable environments with thousands of 

devices, load-balancing the incoming information remain a challenge. Many load-

balancers do not support UDP indeed. One of the few possibility is called Linux Virtual 

Server (LVS). Another solution for LwM2M would be using MQTT as the underlined 

protocol which works with TCP instead of CoAP and UDP.  

MQTT on the other hand has a minimum constellation of 2 clients and one broker. There 

are also solutions which include just one client and one broker; nevertheless, these 

become effectively three since the broker back-end would play the role of a subscribed 

client. Adding one entity means higher complexity as a published message has to reach 

two endpoints generating at least double as many TCP packages than a simple client-

broker scenario. In contrast to LwM2M, clients may publish messages independently to 

any broker’s or other client’s requests. This allows a much lighter apparatus when 

transmitting sensor data. Also, MQTT clients are the one initiating the connection. This 

solves NAT traversal issues which take place when the server starts the communication. 

3.1.5 Industry and Popularity 

The IoT market seems to have found in MQTT a preferred approach when dealing with 

devices. Major IoT device management and cloud platforms like Amazon AWS, Microsoft 

Azure and Google Cloud support MQTT data exchange. As OMA and the cellular industry 

are the minds behind it, LwM2M is already part in form of clients of many cellular modems 

like Quectel’s and Nordic Semiconductors’. Speaking about device management 
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platforms as of May-2021 there is a slow trend in adopting LwM2M. Also, in this case the 

one involved are cellular providers with a few exceptions: Nokia, Telefonica, Huawei, 

ARM, Bosch and more. Nevertheless, AWS, Azure and Google Cloud still have not 

released any information about a possible support. Being the three most popular cloud 

and IoT platforms they have the ability to guide the trend of a new IoT device 

management protocol like LwM2M. Regarding open-source projects, LwM2M comes with 

clients already integrated in cellular modem and microcontrollers as mentioned before. 

Still on client-side Eclipse maintains two demo projects: Wakaama [22], a C client 

implementation for constrained devices and Leshan [23], a more generic Java client. Both 

stick to LwM2M version 1.1. Yet Leshan also include a Server and Bootstrap Server which 

work with CoAP and DTLS using PSK and Certificates. As MQTT has older roots, there 

is a larger variety of choices. Some of the open-source clients include: Paho [24] 

(differentiated in C, C++, Java, Python etc. libraries) and Mosquitto (C library) [25] by 

Eclipse. Mosquitto also implements a C broker. There are also other projects especially 

in form of a web or smartphone application to simulate and abstract the operation of 

publishing and subscribing. These are particularly useful for tests and simulations 

requiring a minimum configuration effort. The quantity of open-source implementation is 

one of the main benefit when choosing MQTT. Being still recent and less popular in the 

IoT market, LwM2M still lacks documentation and differentiation especially in 

programming languages. 

3.2 LTE-M and NB-IoT 

The reason behind the development of LTE-M and NB-IoT in 3GPP’s releases 12 ,13 and 

14 are the same: modem and equipment cost reduction, coverage enhancement, 

improved devices’ lifetime, and scaling LTE devices. Both come from the need of creating 

an LPWAN standard using the existing LTE infrastructure. Using regular LTE for IoT 

constrained devices would have led to worse battery-life performances compared to 

unlicensed access technologies like Sigfox and LoRaWAN as well as high device costs 

to support the same hardware requirements as smartphones have. Below the Chapter 

presents the main points of comparison between LTE-M and NB-IoT. Table 3.2 gives a 

simple overview of the two cIoT standards. 

Feature LTE-M NB-IoT 

Deployment In-band In-band, stand-alone and guard-

band 

Bandwidth 5 and 1.4 MHz 180 kHz 

Duplex Mode Full and Half TDD and FDD Half FDD 

Device’s An-

tenna 

1 1 

Mobility Handover also in Connected 

Mode 

Handover just in Idle Mode 

PSM and eDRX Supported Supported 

Transmit Power 20-23 dBm 20-23 dBm 

Table 3.2: LTE-M vs NB-IoT 
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3.2.1 Deployment 

LTE-M comes with two kinds of narrowband deployments: 1.4 MHz for Cat M1 devices 

and 5 MHz for Cat M2 and non-BL. Since Cat M1 devices are sometimes directly referred 

to the LTE-M standard and represent the most popular hardware available within this 

access technology, this comparison will just take in account the 1.4 MHz BW. LTE has 

the following system bandwidth available: 1.4, 3, 5, 10, 15 and 20 MHz. These are used 

to receive the LTE-M 1.4 MHz narrowband deployment. Operators have the chance to 

insert for example 8 narrowbands in the LTE 10 MHz BW or 12 in the 15 MHz (for more 

information please refer to Chapter 2.3.4). If in this operation there are some bandwidths 

left like in the previously mentioned 10 and 15 MHz cases, these intervals may be used 

for LTE ordinary operations. NB-IoT has a different and more variable approach regarding 

deployment. The stand-alone method takes place in GSM bands and is about refarming 

a part of their spectra. In GSM this represent substituting a 200 kHz band in a 180 kHz 

NB-IoT band which would cause a loss of 20 kHz. In a long-term perspective this could 

be mitigated by the introduction of 5G NR on refarmed GSM spectra and its integration 

with NB-IoT. The In-Band deployment refers on the other hand to LTE or LTE-M. Here 

the 180kHz narrowband is either placed on one LTE PRB or on the spare PRBs deriving 

from LTE-M deployment as explained in Chapter 2.4.2. The final NB-IoT approach is 

using LTE’s guard-bands or at the edge of the carrier’s boarders. From this summary it 

appears that LTE-M chooses a more conservative and effective approach by just relying 

on LTE carrier frequencies while NB-IoT also uses refarmed GSM bands as well as LTE’s 

guard-bands. The narrowbands of the two cellular standards are also different: 1.4 MHz 

for LTE-M and 180 kHz for NB-IoT. This translates in different UL and DL performance 

as well as hardware requirements and therefore complexity and costs. This topics will be 

part of the next sections. 

3.2.2 Data Rates and Cost Reductions 

The cost reduction goals induced LTE-M to include in Cat-0 devices a single antenna 

along with a reduced maximum power. Direct consequences were the introduction of half-

duplex operations and reduced BW (20 MHz) as explained before. All these decisions 

caused a smaller data peak rate reaching between 5 and 10 Mbps. The objective of Cat-

M1 was to make these requirements even more stringent by lowering the BW to 1.4 MHz, 

data rate to 1 Mbps and power class between 20 and 23 dBm [17, pp. 137-139]. FDD 

and TDD are part of LTE-M. It is also important to remark the fact that both full-duplex 

and half-duplex may operate with LTE-M, but this depends in the end whether or not the 

device has a double oscillator. NB-IoT has even tighter requirements in terms of device 

complexity and costs. The system BW corresponds to 180 kHz and base-band operations 

only include one synchronization sequence with a lower sampling rate of 240 kHz in 

contrast to LTE. This is fundamental to reach memory consumption and processing 

complexity [26, p. 13]. Also, the choice of FEC like TBCC rather than turbo codes delivers 

a lower overhead. Lower order modulation schemes and only-half-duplex operations 

(unlike in LTE-M) reduce data rates. Finally, NB-IoT devices use on-chip PA which is 

beneficial since like in LTE-M the transmit power level is limited to 20-23 dBm. Overall, 

NB-IoT and LTE-M have the same cost reduction goals. What is different is the concept 

of budget-cap and the methodology used. On one side LTE-M keeps minimum 

requirements still allowing a peak data rate of 1 Mbps by using higher modulation 

schemes and more complex FECs like in LTE and it has reduced BW (1.4 MHz) but still 

much higher than NB-IoT (180 kHz). On the other, NB-IoT accept a lower data rate but 

reduces devices costs by just relying on half-duplex, on-chip PA, lower modulation 

schemes like QPSK and BPSK and less complex FECs [17, pp. 220-221]. 
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3.2.3 Coverage 

Despite the strict cost reductions, both access technologies aim at delivering robust 

coverage performances. NB-IoT comes with three different coverage extensions (CE) 

levels: CE level 0 representing the base level as well as the more advanced CE 1 and 2. 

Those three operate according the actual signal conditions, namely RSRP as well as 

Carrier to Interference and Noise Ratio (CINR). In order to increase the coverage, these 

three levels choose a specific number of downlink and uplink repetitions, as defined by 

the network operator [27]. As mentioned in the previous section, NB-IoT relies on QPSK 

and BPSK in the UL channel. Here the uplink modulator maintains a close to constant 

envelope, hence the PA works at the maximum transmitting power with no need of power 

back-offs [17, p. 221]. This is a big advantage for a robust coverage. LTE-M follows a 

similar approach by defining CE levels according to the number of repetitions: CE mode 

A is obligatory on Cat-M1 and -M2 devices and allows up to 32 subframe repetitions while 

mode B is not mandatory and supports up to 2048 repetitions. These modes are vital to 

reach the 20 dBm coverage target. As this is the same goal as in NB-IoT, both standards 

apply similar and comparable ways to reach acceptable coverage for different use-cases. 

Nevertheless, LTE-M can also apply frequency-hopping making more suitable to 

frequency diversity [17, p. 346]. 

3.2.4 Handover 

LTE-M maintains the same procedures as LTE for cell-handovers. It is therefore suitable 

for use-cases where the devices are moving performing one ore multiple cell changes 

with similar QoS. For NB-IoT this is not the case. In fact, in idle mode the modem has to 

reselect the cell. During connected mode, this is not possible. 

3.2.5 Power Saving Techniques 

As explained in Chapters 2.3.8, 2.3.10 and 2.4.5, NB-IoT and LTE-M include the same 

techniques to save battery-life in idle mode. eDRX and PSM are highly adopted in various 

kind of cIoT modems and networks. 
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4 Experimental Setup 

This Chapter explains the hardware and software setup used for the measurements. It 

first deals with the devices used to send and transmit data: modem, extension board and 

regular board. Secondly, this section presents the power analyzer used to determine the 

device’s energy consumption during data communication as well as the software to 

capture the packets on server-side. Thirdly, it gives an overview about the hardware 

measurement setup used for the experiments. Finally, it provides a description of the 

software and open-source repositories adapted for the test environment. 

4.1 Modem 

The Quectel BG96 is a popular all-in-one LTE Cat M1, Cat NB1 and EGPRS module. It 

can be easily integrated with other hardware thanks to industry-standard interfaces like 

USB, UART, I2C and has compatible drivers for Windows, Linux, and Android. It supports 

the following LTE-M and NB-IoT FDD bands: 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 

28 and 39 (TDD just for Cat M1 devices). In Germany, for example, Deutsche Telekom 

utilizes bands 20 and 3 for LTE-M and 8 for NB-IoT while Vodafone 20 for NB-IoT. This 

is the trend for other operators in the EU too. In USA one can find bands 2, 4 and 12 

operated for example by AT&T and T-Mobile US for both NB-IoT and LTE-M [28]. The 

BG96 does not allow the LTE-M maximum downlink and uplink speed of 1 Mbps. It 

reaches a maximum of 375 kbps for both DL and UL. Using NB-IoT the values are as 

expected lower: 32 kbps (DL) and 70 kbps (UL). As imposed in the cIoT standards the 

maximum transmit power is 23 dBm. Table 4.1 reports some typical consumptions values 

that may become relevant in the measurement section [29]. 

State LTE Cat M1 LTE Cat NB1 

Power Saving Mode (PSM) 10 µA 10 µA 

Idle State (DRX=1.28s and 

eDRX=40.96s) 

15 mA 15 mA 

Sleep State (DRX=1.28s) 1.5 mA 1.96 mA 

Sleep State (eDRX=40.96s) 1.2 mA 1.1 mA 

Connected Mode (Avg.) @23 dBm 205 mA 223 mA 

Table 4.1: Quectel BG96 Consumptions [29] 

The module also supports a variety of protocols. These are to be configured via AT 

Commands (see Chapter 4.3) and include: PPP, TCP, UDP, SSL, TSL, FTP(S), HTTP(S), 

MQTT, CoAP and LwM2M [29]. The BG96 comes in fact with integrated MQTT and 

LwM2M clients. This is particularly useful to exploit the modem’s computational resources 

instead of relying on external boards that just use the modem as a gateway to the cellular 

network. The benefit is also a ready-to-work client without the need of configuring and 

installing a new one on an external board. Nevertheless, having tested the LwM2M client 

on the BG96, the objects and resource available appeared to be insufficient for the scope 

of this research and MQTT and LwM2M clients on a regular board were used (Chapter 

4.7). 
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Figure 4.1: Quectel BG96 [29] 

4.2 SIM Card and Operator 

The experiments rely on the connectivity provided by the MVNO 1NCE and its SIM cards. 

Typical cellular operators still do not have the motivation and freedom of expanding the 

IoT market making it accessible to everyone in a simple manner. They offer IoT plans 

only to business companies. 1NCE on the other hand has the mission to make cellular 

connectivity open to everyone. By offering an IoT flat rate it supports every kind of user: 

from the most expert costumers and companies to the beginners developing their own 

IoT projects. As a Mobile Virtual Network Operator (MVNO) it offers both M2M regular 

and electronic SIM Cards able to support GSM, UMTS, LTE, NB-IoT and LTE-M. It also 

allows a 10 years data retention and 500000 read/write cycles. There are also other 

services available: among others a Rest API for Connectivity management, OpenVPN to 

establish a secure connection between 1NCE’s network and the own application server, 

and Connectivity Suite to enable plug-and-play devices communication directly with AWS 

services [30]. Moreover, there are vast number of countries included in 1NCE roaming 

agreements. As of mid-2021 the majority of EU countries and China appear in the NB-

IoT roaming agreements while US and Canada in the LTE-M. As this is slowly becoming 

popular also within Europe, the majority of the operators still does not apply roaming 

restrictions within this area. 

4.3 AT Commands 

There a special set of instructions in order to configurate a cellular modem. These were 

invented by Dennis Hayes for its Hayes Smartmodem 3000 baud modem in 1981 [31]. 

AT stands for Attention and there are different types of requests as described Table 4.2. 

"The AT Commands Set implemented by BG96 is a combination of 3GPP TS 27.007, 

3GPP TS 27.005 and ITU-T recommendation V.25ter as well as the AT Commands 

developed by Quectel" [32, p. 8]. Theoretically all of the BG96 interfaces allow to send 

and wait for AT commands requests and responses. Nevertheless, as the work will 

describe in section 4.4 the extension board only supports UART and USB. Both choices 

are reliable and although the USB baud rate is higher this normally does not play any role 

in the modem configuration. 
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Test Command AT+<x>=? This command returns the list of parameters and 

value ranges 

set by the corresponding Write Command or internal 

processes. 

Read Command AT+<x>? 

 

This command returns the currently set value of the 

parameter 

or parameters. 

Write Command AT+<x>=<…

> 

This command sets the user-definable parameter 

values 

Execution Com-

mand 

AT+<x> This command reads non-variable parameters af-

fected by 

internal processes in the UE 

Table 4.2: Types of AT Commands and Responses [32, p. 9] 

There are various procedures to establish a cIoT connection. Listing 3.1 reports one 

procedure example that helps scanning LTE-M’s Radio Access Technology (RAT). After 

that the user may choose a preferred LTE band (in this case 20 as the connection took 

place in Slovakia) and consequently set up the APN, 1NCE’s in this case. The APN field 

is mandatory and allows the authentication in the default operator network as well as 

roaming authorization in the local one. Performing a manual registration inserting the 

provider’s code (in this case Orange SK, 23101) helps then reducing energy consumption 

in the attaching and connection phase, especially in roaming environments (please find 

a list of more cellular operators and their code in appendix LTE-M and NB-IoT Operators). 

The same is true when setting the band: limiting the scanning helps saving battery power 

but could be limiting the connectivity in dynamic scenarios. Because this version of the 

BG96 does not allow the preferred operator list AT command (AT+CPOL) there are some 

cases where choosing manually the network operator is the only choice. When powering 

on, the modem tries to attach to the wrong cellular provider which 1NCE does not provide 

the roaming agreement with. This is the case in Italy where both Vodafone Italia and 

Telecom Italia offer NB-IoT frequencies on band 20 (see Table 6.4 in the appendix). Here 

the BG96, presumably because of the signal condition in a specific location, only tries to 

attach to Telecom Italia and ignores Vodafone Italia which 1NCE has the Italian roaming 

contract with. It is in some scenarios therefore important to manually set up operator and 

frequency band. Finally, the command AT+QNWINFO in Listing 3.1 outputs RAT, operator, 

band, and channel in the following form: 

+QNWINFO: "CAT-M1","23101","LTE BAND 20",6200 

 

which provides a summary of the chosen settings. Please find in appendix B. the AT 

Commands procedures for connecting the modem to NB-IoT. 



Experimental Setup  39 

 

4.4 Extension Board 

In order to enhance the services and tools available to a cellular modem like the Quectel 

BG96, the embedded system industry manufactures extension boards. These are 

integrating modems and add extra functionalities like sensors, own firmware, and 

interfacing libraries. The Sixfab Cellular IoT HAT is an extension board (Figure 4.3) which 

contains the Quectel modem, a SIM Card slot, and provides a micro-USB interface as 

well as 40 GPIO pins thought among others for 3.3 V and 5.5 V input voltage, ground, 

I2C and UART. All data pins work with 3.3 V reference. There are also three different 

LEDs: Status LED, which blinks when the board is powered, User LED, to show the power 

regulator status, and Netlight LED, indicating when data is transmitted or received. As 

pointed out in Chapter 4.1 the BG96 supports GNSS of various kind: GPS, GLONASS, 

BeiDou/Compass, Galileo and QZSS. The Cellular IoT HAT supports this functionality by 

integrating a passive GPS antenna circuit by default. The shield has in fact a GNSS 

antenna socket as well as an equivalent LTE one. The dual antenna is called Pulse 

Electronics Gemini Series and is depicted in Figure 4.2. It operates in bands B1-B23, 

B25-B29, B33-B42 suitable for EU and Asia. The supported frequencies are 1559-

1610MHz. It is also foldable for tight spaces and represents a reasonable choice for 

constrained cellular devices where the complexity must be balanced with the 

manufacturing costs. Moreover, as explained before, the Cellular IoT HAT offers slots for 

40 GPIO pins as visible from Figure 4.3. In fact, Sixfab designed this device as an add-

on for the Raspberry Pi (RPi) which also hosts the same number and kind of pins. By 

stacking the IoT HAT on top of the RPi, the BG96 receives the necessary input voltage 

via GPIO and can at the same time deliver the UART and I2C interfaces via pins. From 

the figure in appendix C. one may have a deeper look into the GPIO and their role. 

Another important aspect about the shield is the Point-to-Point (PPP) link coming from 

the BG96. This is offered either via the micro-USB interface which can be exploited with 

a micro-USB to USB cable or via UART. This solution makes the board flexible to 

guarantee a cellular connection to any kind of device, from personal computers to other 

embedded systems. In case the PPP connection is exploited via UART however, the DL 

and UL speed decrease. The extension board also comes with a Python library to 

facilitate the use of AT Commands as well as control hardware components like LEDs 

// LTE-M scan mode configuration 

AT+QCFG="nwscanseq",02,1 

AT+QCFG="nwscanmode",3,1 

AT+QCFG="iotopmode",0,1 

 

// Set LTE-M Bands to LTE Band 20 

AT+QCFG="band",0,80000,0 

 

// Define PDP context using 1NCE APN 

AT+CGDCONT=1,"IP","iot.1nce.net",, 

 

// Manual Registration to Orange SK 

AT+COPS=1,2,"23101",8 

 

// Retrieve network and operator info 

AT+QNWINFO 

 
Listing 4.1: LTE-M Modem connection procedure through AT Com-

mands 
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and GPIOs [33]. Nevertheless, as of May 2021 the library is still limited and does not 

allow hosting java and C projects for LwM2M or MQTT. Since this thesis’ primary 

objective is the device and network performance analysis using LwM2M and MQTT open-

source projects, the Python library becomes irrelevant for the scope of this work. 

 

Figure 4.2: Multi-Band Antenna 

 

Figure 4.3: Sixfab Cellular IoT HAT [33] 

4.5 Power Analyzer 

When evaluating IoT protocols within constrained devices the energy consumption 

analysis becomes relevant. Yet it is sometimes difficult to measure devices in real-life 

conditions. Mobility in relation to energy consumption for example may be difficult to 

analyze with standards tools. The Qoitech Otii Arc is a compact power analyzer suitable 

for measurement in any location. Its dimensions and weight are 10.9cm x 14.4cm x 4.4 

cm for 450g [34]. It is also a power supplier and provides a constant current and voltage 

between 500mV and 5V. When powering the Otii Arc only via USB the maximum voltage 

delivered does not exceed 3.75V otherwise it reaches 5V. Because the extension board 

requires a voltage in range 3.3 to 5V, all the measurements were performed with 3.75V 

to avoid the need of other power sources other than the laptop USB. This is especially 

important when measuring in mobility scenarios. "The Arc has an accuracy of ±(1% + 

0.5μA) and a sample rate of 4kHz in the lower current region and 1kHz when the current 

is larger than 19mA" [26, p. 21]. This feature makes it particularly suitable when detecting 

the current or energy consumed in PSM which for the IoT HAT is supposed be around 

10μA [33]. On the other hand, the voltage accuracy reaches ± (0.1% + 1.5mV) with a 

sample rate of 1ksps. For more details refer to Appendix D. As illustrated in Figure 4.4, 

the Otii’s front part has 14 pins and two banana female connectors for + and - voltage 

input. Within the available pins there are the UART TX and RX. These becomes useful 
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when syncing logs to current behaviors. It is therefore possible to configure own scripts, 

like the LwM2M and MQTT clients for the scope of this work, to utilize the UART port for 

logs (please find more details in Chapter 4.7). As depicted in Figure 4.5 within the Otii’s 

software (which is freely available [34]), the user may then select parts of the captured 

time-current graph and receive automatically the related logs coming from the UART 

ports highlighted. Other than the UART window, the software application comes with the 

possibility of comparing different recordings; this makes it easy to recognize differences 

between configurations. 

 

Figure 4.4: Qoitech Otii Arch [34] 

 

Figure 4.5: Screenshot from the Otii's software showing a highlighted part of the graph synced with the corresponding logs 

4.6 Packet Analyzer 

Wireshark is a widely-used packet and network protocol analyzer. It allows inspecting in 

depth incoming and outgoing packets. It also gives the possibility to filter a particular port, 

IP address or interface to monitor outgoing or ingoing packets from. All of the most 

common protocols are supported. Focusing on IoT messaging and device management 

protocols we find: MQTT, CoAP, AMPQ, XMPP and MQTT-SN. Regarding LwM2M, 

Wireshark as of May 2021 just supports Lightweight M2M TLV. From the documentation 

this seems to be an initial version that only support payload with a TLV encoding. It can 

recognize predefined and connectivity resources along with their data types. Other 

protocols relevant for this work are the secure TCP and UDP variants: TLS and DTLS. 



Experimental Setup  42 

However, when retrieving this packets, their payload appears as expected encrypted. 

Wireshark also provides a terminal based version called Tshark. It is a lightweight network 

analyzer running on desktop-less operating systems. This is ideal when for example 

connecting to a remote VM without desktop access. Tshark is analogue to tcpdump when 

running without options. A typical command to capture packets arriving at a LwM2M 

server on port 5684 may look like this: 

tshark -i ens5 -f "udp port 5684" -w server_dtls_.pcap 

This command ensures capturing UDP packets flowing on interface ens5 and saving the 

session results in a .pcap file. This is then transferred to a desktop computer for a deeper 

analysis thanks to Wireshark. The file conserves in fact all of the capture’s details, that 

on a desktop-less machine would be harder to analyze. 

4.7 Measurement Setup 

Figure 4.6 shows the hardware and measurements setup which consists of three major 

components: 

• Power Analyzer - Qoitech Otii Arc 

• Extension Board with Cellular Modem and Antenna – Sixfab IoT HAT with 

Quectel BG96 

• Regular Board – Raspberry Pi 3 Model B 

Besides the power analyzer and the extension board already presented in Chapters 4.5 

and 4.4, the regular board delivers the software clients for the experiment. The Raspberry 

Pi is versatile in this sense since it hosts Raspbian, a Linux distribution optimized for the 

RPi. This allows the board to be flexible in supporting all of the majority open-source 

projects without constraints related to programming languages or framework 

environments. The extension board does not provide indeed the best solution in this 

matter since it only offers a Python library for interfacing the modem. The best solution 

for the scope of this work is therefore to exploit the extension board’s PPP interface to 

transport the data packet from the RPi towards the IoT HAT and subsequently to the 

modem. The PPP does not add any noticeable delay and allows the BG96 to just send 

out the data without adding any extra computational effort using the integrated MQTT and 

LwM2M clients (for more information about the integrated libraries please refer to Chapter 

4.1). As Figure 4.6 illustrates the USB to mini-USB cable (1) between extension board 

(4) (on the bottom) and regular board (5) (on the left) delivers the PPP link. The power 

analyzer (2) (on the top) powers the extension board (4) with 3.75 V and a constant 

current of 907 mA. At the same time, it gathers information about the energy consumption 

and returns a minimum, maximum, and average current as well as the energy 

consumption for the selected time-frame. The banana connectors on the right of the Otii’s 

frontal part (3) are inserted into the 5 V and digital ground GPIO pins (6) of the IoT HAT. 

As described in Chapter 4.5 the power analyzer offers UART TX and RX GPIO male and 

a digital ground pin on the front-left (7). These are cabled with the Raspberry Pi’s UART 

RX, TX and digital ground respectively (8). The LwM2M and MQTT client on the regular 

board send constant logs via UART. These appears then on the Otii application software 

which allows to configure the required baud rate. Finally, Raspberry Pi and Otii Arc are 

both powered by the laptop’s USB ports. 
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Figure 4.6: Measurement Setup 

4.8 Software 

This section focuses on the software component used for the experiments. As the 

development of ad-hoc clients and servers is out of the thesis’ scope, the implementation 

is about adapting open-source repositories. Both LwM2M and MQTT are supported by 

the Eclipse Foundation which makes free projects available on Github [35]. Out of the 

available projects, Mosquitto is chosen as implementation of MQTT. Regarding LwM2M 

Eclipse has developed Leshan and Wakaama, as explained in Chapter 3.1.5. From 

these, the more advanced and complete is Leshan, which also has high degree of 

freedom when customizing the solution with extra parameters and variables. The 

following part of this Chapter dives into Leshan and Mosquitto, the chosen open-source 

repositories available for LwM2M and MQTT. 

4.8.1 Leshan 

The Leshan project contains a LwM2M Client, Sever and Bootstrap Server 

implementations. Each of them comes with development guidelines as well as demo 

scripts for testing purposes but are not ready for production cases. The thesis takes in 

account both Client and Server parts describing and adapting them for the experiments. 

The Bootstrap Server is however not part of the scope. This is because an initial bootstrap 

phase before the client-server handshake would influence the comparison with MQTT 

enormously. As a trade-off between energy consumption/delay and security, the 

experimental setup prefers a factory bootstrap simulation providing to client and server 

the necessary credentials upon connection. Moreover, the 1.x Leshan version of the 

repository reflects LwM2M version 1.0.2 while the 2.x LwM2M version 1.1.1. There is still 

neither short- not long-term plan to include LwM2M version 1.2 within the project. 

1 
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a) Server 

The Leshan server aims at implementing the LwM2M regular Server. It includes a demo 

Server running on a remote VM. It supports full usage of DTLS through either PSK or 

X509 certificates. The DTLS Connection ID (CID) is also part of the code and may be: 

activated, activated specifying the CID length in bytes, activated but without CID 

generation for the foreign peer or deactivated (for more information about CID please 

refer to Chapter 2.1.9). When starting the server, it is possible to specify a local webport 

where to execute the UI. Figure 4.7 shows the server web interface where to manage the 

client as well as configure the server authentication method. In the client tab it also 

possible to specify the response timeout when waiting for a response as well as to decide 

a payload encoding choosing one between the following formats: TLV, plain Text, JSON, 

SenML JSON, Opaque, CBOR and SenML CBOR. The security tab allows to read the 

server’s certificate and public key as well as to configure the client’s credentials. When 

launching the client via terminal, flags may help setting up the right connection. These 

options are reported in appendix E. . 

 

Figure 4.7: Leshan Server Web UI 

b) Client 

Like the LwM2M Server, Leshan includes a LwM2M Client demo. Other than the DTLS 

and CID additional options also present in the server, the client contains among others: 

reconnection/re-handshake on update operation and re-handshake instead of session 

resume. This choices would fit into a strong security concept where the client performs a 

full handshake every time instead of an abbreviate one. Since one of the thesis’ main 

aspect is the energy consumption analysis in LPWAN, the experiment does not rely on 

these flags and includes instead the usage of CID and abbreviate handshakes when 

needed. There are other configurations related to Californium (library for CoAP and 

DTLS) that may become relevant when implementing the client. One of those is to choose 

whether or not the client should use CoAP CON or NON notifications when responding 

to an observe request from the server. This has potentially a big impact on traffic-over-

the-air and energy consumption: the CON includes a confirmation packet by the server 

which may create longer transmission-durations, traffic, and battery consumptions. 
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Moreover, in order to perform the measurement with different payloads, the resource 

/3/0/0 device/manufacturer has been modified. After the change, when the server triggers 

an observe operation, the notification will include the payload size specified in the added 

flag “-bs”. For the complete list of addable flags please refer to Table 6.8 in the appendix. 

4.8.2 Mosquitto 

Once again, the Eclipse Foundation provides an open-source project but this time 

regarding MQTT. Mosquitto is a message broker implementing the latest protocol 

specifications, including version 5.0. The official website states that Mosquitto is suitable 

for every kind of device, either constrained or with extended computational features [36]. 

The related GitHub page not only contains a C library to configure the MQTT broker but 

also one for the client. There are other popular client implementations as for example 

Paho, but these were discarded in the work because of the extensive and complete 

Mosquitto documentation available for both broker and client. 

a) Broker 

As the LwM2M Server does, the MQTT Broker receives and sends packet from and to 

the client. The packets capture, as reported in Chapter Results and Analysis, takes 

place on broker side as this represents the communication terminal in this experiment. 

The broker may be customized by adding a configuration file. This is especially neces-

sary when dealing with secure transportation. TLS with PSK requires an identity and a 

secret key. Listing 3.2 shows the PSK broker configuration file content used for the 

measurement. 

After defining the secure port which in MQTT is recommended to be 8883, log types are 

activated. Then if the variable use_identity_as_username is true the PSK identity is 

used instead of the MQTT regular username. The psk_hint enables the PSK within 

the broker and may be set to any value. After, the file defines the TLS version as well 

as the TLS ciphers. This should correspond with the one utilized in the LwM2M DTLS 

PSK configuration to provide fair comparison between the two protocols. Finally, the 

configuration file links the text file where identity and secure key are stored. Next, List-

ing 3.3 reports the configuration file for the TLS broker dealing with certificates. 

port 8883 

log_type all 

use_identity_as_username true 

psk_hint my psk connection 

tls_version tlsv1.2 

ciphers PSK-AES128-CCM8 

psk_file /etc/mosquitto/psk/psk_file.txt 
 

Listing 4.2: MQTT Broker configuration file for TLS PSK 
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This time the TLS port is 8884. This choice does not reflect the recommended port in the 

specification but allows to run both broker versions at the same time on the same 

machine. The file contains similar variables as in the PSK configuration file. However, 

this time instead of the identity and password file, the path to the certificates and keys 

are linked: the certificate authority (CA) key as well as the broker private key and signed 

certificate. Regarding a non-secure broker, there is no need of defining a specific 

configuration file. The user may execute sudo mosquitto -p 1883 and the broker will 

just start on the non-secure port 1883. 

b) Client 

The Mosquitto client comes with a well-documented C library. This is actually included 

directly into the Mosquitto Broker GitHub repository. The experiment as described later 

in Chapter 5.3 is divided into different phases. There is a different client script for every 

phase including different configurations within the code: 

• Broker IP address and port 

• Publish frequency (if needed) 

• Quality of Service 

• Payload Size (if needed) 

• Security TLS type: no security, PSK or certificates 

• Path to authentication files (PSK, certificates) 

• Supported ciphers 

• Supported TLS version 

• Lifetime 

• Logs 

Changing these variables within the experiment means changing use-case and therefore 

packet and energy consumptions results, as the thesis reports in the next Chapters. 

port 8884 

log_type all 

use_identity_as_username true 

require_certificate true 

cafile /etc/mosquitto/CA/root_cert.pem 

keyfile /etc/mosquitto/Server_Cert/keys.pem 

certfile /etc/mosquitto/Server_Cert/CA_signed/server.crt 

tls_version tlsv1.2 

 
Listing 4.3: MQTT Broker configuration file for TLS with Certificates 
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5 Experiments 

This Chapter enlightens the experiments’ organization and setup. First, the Network 

Structure gives an overview about the different components enabling the communication, 

including network properties and providers. Secondly, Preliminary Tests of cellular 

Networks as well as necessary Hardware and Software delivers a description of eventual 

issues followed by a potential resolution. Lastly, Experiment Flow and Measurements 

Details describe scenarios, methods and configurations taken in account within the 

measurements.  

5.1 Network Structure 

1NCE deploys its core network within Amazon AWS Virtual Private Cloud (VPC). As 

depicted in Figure 5.1 the P-GW, which is built on more EC2 machines, is located within 

the same virtual network as the Application Server does. Another experiment-dedicated 

EC2 instance runs multiple LwM2M Servers and MQTT Brokers at the same time. These 

operate on different ports according to the security level. Leshan allows one single PSK- 

and Certificates-based Server while MQTT requires two different ports for simultaneous 

execution due to the separated configurations (Chapter 2.2.2b). On the left-side the 

clients start on a Raspberry Pi whose packets are incapsulated and sent via PPP to the 

extension board (IoT HAT). At this point the integrated modem (BG96) takes care of the 

cellular link. Depending on the access technology and APN set, the data reaches the 

correct S-GW and P-GW (for more information about the cellular network architecture 

please refer to Chapter 2.3.2). Because 1NCE is a virtual network operator, it does not 

own cellular infrastructure. Instead it relies on partner mobile operators thanks to roaming 

agreements. For the measurement the relevant operators are Orange Slovakia and 

Vodafone Italia. 

 

Figure 5.1: Network Structure 

5.2 Preliminary Tests 

Preliminary tests are needed to understand the behavior of Network, Hardware, and 

Software. This step is useful to understand and possibly adjust configurations and 

parameters based on the desired requirements.  
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5.2.1 Network 

The modem handles the communication between edge and cellular network. As 

described in Chapter 4.3, the AT commands help setting various configuration which 

include among others: APN, access technology, band, and operator. Once the eNodeB 

attaches the modem, the connection phase may start (part of this is described in Chapters 

2.3.7 and 2.4.4). Once the device is finally connected and does not send or receive any 

data, DRX or eDRX cycles take place. Figure 5.2 shows the modem’s current 

consumption over time. On the left- and right-side the figure represents the end and the 

beginning of the idle phase, where the paging periods exist. In the middle the connected 

mode starts with the data exchange and finishes with the RRC connection release and 

the successive direct transition into idle mode. As visible from the logs and the 

synchronized highlighted part on the graph, the data exchange only lasts for the first 583 

ms since the beginning of the connected mode. A time-frame of about 5 seconds (see 

upper time axes) follows. This is called DRX inactivity timer as explained in Chapter 2.3.9. 

As noticeable, the carrier (in this case Orange Slovakia with its LTE-M network under 

testing) chooses to enter the idle mode immediately after the DRX inactivity timer skipping 

the DRX timers (for more information refer to Figure 2.22). The 5 seconds RRC inactivity 

timer (also present in Vodafone Italia NB-IoT) are not ideal in terms of energy 

consumption, as described later in Chapter 6. Nevertheless, it turns out to be efficient for 

those cases where the UE may transmit successive messages with a short time-interval 

between each other and must stick to stringent delay-requirements. This is beneficial 

since the UE does not have to re-enter the connected mode which might cause extra-

latency. Figure 5.3 depicts the network behavior maintained by Magenta Telekom Austria 

which applies a DRX inactivity timer of about 95 ms within LTE-M band 20. In this case 

the DRX timers do not seem to appear too. Finally, Table 5.1 reports the network 

properties involved in the measurements. Please notice that the used modem can control 

the DRX cycle time. However, the thesis chooses to not modify this parameter in order to 

analyze pros and cons of a shorter or longer cycle within the networks. 

Access Technology Provider (Minimum) DRX RRC Inactivity Timer 

LTE-M Orange Slovakia 2.56 s ~ 5 s 

NB-IoT Vodafone Italia 10.24 s ~ 5 s 

Table 5.1: Network Properties used for the experiments 

 

Figure 5.2: LTE-M idle and connection mode with RRC inactivity timer provided by Orange Slovakia 

RRC Inactivity Timer 
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Figure 5.3: RRC inactivity timer provided by Magenta Telekom Austria 

5.2.2 Hardware 

Besides the BG96, the IoT HAT contains other components that might influence the 

energy consumption. First of all, the three LEDs play a relevant role. The internal Python 

library cannot control the way the lights behave. The modem is the only entity able to set 

the blue Netlight either into blink or static mode; while there are no methods to configure 

the other two. As monitored during the first tests, modifying the behavior of the Netlight 

does not effectively decrease the consumed energy. The Sixfab documentation states 

that the energy consumption values in Table 6.5 "refer to the consumption of only the 

BG96 module, not the whole circuit at all. With the LEDs and regulation losses, it may 

rise to 25mA" [33].  

Another component which affects the measurement is the USB link dedicated to the PPP 

tunnel between Raspberry Pi and IoT HAT (extension board) during the experiment. In 

this case, the PPP connection itself does not play any role in the energy consumption, 

while contrarily the USB power management increases the used current and creates 

noise. This is visible from Figure 5.4. It shows on the left the current before inserting the 

micro-USB into the port and after. Initially the current is constant at about 20 mA (1) and 

after not only it reaches approximately 37 mA (2) but, after the DRX cycle takes place, it 

also shows a much noisier behavior (3). The current oscillates between 37 and 43 mA 

(3). Using the UART link instead of the USB to allow the PPP transport might have 

avoided this phenomenon. However, when trying to establish a data transmission 

between Raspberry and IoT HAT, the extension board did not respond. It turned out that 

to allow this setup, the IoT HAT would also need the Raspberry power source. This was 

however not possible since during the measurements the voltage must come from the 

Otii. The outcome is not optimal for measuring the power consumption as it enhances the 

average energy. Yet it does not affect the comparison between different protocols. The 

current-increase as well as the noise caused by USB remained constant for both LwM2M 

and MQTT data-collection during the entire duration of the experiments and did not 

prevent from detecting data peaks within the graph. 

RRC Inactivity Timer 
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Figure 5.4: Influence of the USB link on the IoT HAT's current consumption 

5.2.3 Software 

Because the experiments also deal with the packet analysis, the software and its 

configuration may play a relevant role in terms of efficiency. The goal is, like for the 

network and hardware parts, to make the comparison as fair as possible. Since LwM2M 

and MQTT represent respectively messaging and device management protocols, they do 

not share the same domain and their adaptions cannot therefore be identical. Starting 

from the security aspects, Leshan and Mosquitto use different DTLS and TLS libraries, 

respectively Scandium and OpenSSL. The first one is a Java and the second a C project. 

They have different scopes, the first adapted for multi-core machines and the latter for 

general usage, but come with the most appropriate open-source projects available for 

this thesis, as explained in Chapter 4.8. Next, the measurement must deal with the same 

cipher suites according to the security level. LwM2M Leshan for example uses by default 

an ECDHE suite for PSK. Unfortunately, Mosquitto does not. After adapting the Leshan 

code to include more ciphers on server-side, the cipher flag -c was set to 

TLS_PSK_WITH_AES_128_CCM_8: Advanced Encryption Standard with 128bit key in 

Counter with CBC-MAC mode with 8-Octet Integrity Check Value (ICV). The same was 

done for the MQTT client and broker as described in Listing 3.2. Focusing on the 

certificate settings, the experiment includes a high-computational cipher suite to monitor 

the protocol behaviors in challenging conditions. The cipher is called 

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 and include: Elliptic Curve 

Diffie-Hellman Ephemeral (ECDHE) as the key exchange protocol, Elliptic Curve Digital 

Signature Algorithm (ECDSA) as the authentication method, Advanced Encryption 

Standard with 128bit key in Galois/Counter mode (AES 128 GCM) as the encryption and 

Secure Hash Algorithm 256 (SHA256) as the hash algorithm. Leshan uses it by default 

while the Mosquitto client had to be modified. Moreover, during the first packet capture-

tests the DTLS handshake in LwM2M showed a suboptimal performance. Table 5.2 

reports the packet flow at server-side where the security handshake and later the LwM2M 

registration (application data) take place. The first noticeable detail is that frame 4 and 5 

are equal. The server has in fact a DTLS retransmission timeout of 1 s as specified in 

RFC6347 (DTLS 1.2). Repeating the test multiple times, it becomes clear how this causes 

more traffic-over-the-air as well additive overhead at client-side. As a result, the server’s 

experiment configuration was adjusted following RFC7252 (CoAP) which relaxes the 

retransmission timeout to 2 s. This change provided a faster client-response of about 25 

ms in average. The second modification is triggered by focusing on the previous timeout-

Before USB connection 

DRX cycle 

1 

2 3 
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cause. Frame 6 illustrates the packetization of certificate, client key exchange, certificate 

verify, change cipher spec and connection id in one single payload. It may be beneficial 

in terms of traffic but for a limited device like the Raspberry Pi the encryption of such 

components might require extra computational efforts and delays. After adapting the 

client to enable LwM2M DTLS packet-fragmentation, the new captures did not actually 

show neither consistent differences nor negative effects. Nevertheless, the 

measurements were carried on with this change as it represents a good-practice 

configuration for constrained devices. 

As a matter of comparison, it is important to define the type of message sent by MQTT 

and LwM2M. The first has a flexibility in terms of QoS (for more information refer to 

Chapter 2.2.4). In the second one may choose between CON and NON CoAP POST 

(Chapter 4.8.1b). The objective is to configure MQTT to have least-consuming and best-

effort network characteristics which make it suitable for LPWAN. These prerequisites 

translate into QoS 0 or fire and forget approach. Reflecting on LwM2M, the doubt was 

between making the protocol as similar as possible as MQTT or distancing it by keeping 

the pure UDP’s connectionless nature. CON- allow a peer’s confirmation adding limited 

delay and traffic, while NON-Posts are less robust but more lightweight. In the end, the 

experiment chooses to include NON confirmable messages. This is because also 

LwM2M has to adapt to real-world LPWAN providing a best-effort approach in case of 

bad coverage and low-signal conditions. 

No. Time (s) Source Desti-

nation 

Protocol Length 

(bytes) 

Info 

1 0.000000000 Client Server DTLSv1.2 156 Client Hello 

2 0.000631922 Server Client DTLSv1.2 102 Hello Verify Request 

3 0.142652410 Client Server DTLSv1.2 188 Client Hello 

4 0.147935692 Server Client DTLSv1.2 1024 Server Hello, Certificate, 

Server Key Exchange, Certifi-

cate Request, Server Hello 

Done 

5 1.148352071 Server Client DTLSv1.2 1024 Server Hello, Certificate, 

Server Key Exchange, Certifi-

cate Request, Server Hello 

Done 

6 1.734453752 Client Server DTLSv1.2 923 Certificate, Client Key Ex-

change, Certificate Verify, 

Change Cipher Spec, Con-

nection ID 

7 1.744291004 Server Client DTLSv1.2 117 Change Cipher Spec, En-

crypted Handshake Message 

8 2.142554136 Client Server DTLSv1.2 231 Connection ID 

9 2.144253597 Server Client DTLSv1.2 105 Application Data 

Table 5.2: Packet Capture of LwM2M DTLS Handshake with Certificates 

Finally, the measurement also includes a performance comparison using variable 

payload sizes. In this case, the choice was between including exactly the same payload 

or also consider the LwM2M data-encoding. As mentioned in Chapter 3.1.3, since 

LwM2M is a device management protocol, OMA’s specification comprehends different 

formats encoding, e.g. Type-Length-Value (TLV). The same feature does not exist in 
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MQTT. The thesis decides to include LwM2M’s choice and selects for MQTT the regular 

payload while for LwM2M its TLV encoding, adding some minimal length. For an 800 

bytes regular unencrypted payload for example, TLV just adds 4 bytes (header). 

5.3 Experiment Flow 

The objective of the experiment is to compare LwM2M and MQTT analyzing the network 

and energy consumptions behaviors (find exact details at the end of this section). Variety 

is important to provide the reader use-cases where to apply the thesis’ outcome. The first 

variable is the LPWAN access technology: 

• LTE-M  

• NB-IoT 

Being the two most popular licensed cIoT links, it is interesting to see which IoT protocol 

is more suitable to which technology. The second variable is the authentication or more 

in general security method. There are three options:  

• no Security (noSec) 

• Pre-Shared-Key (PSK) 

• Certificates (Cert) 

All three are available for both TLS and DTLS, the security protocols utilized by the 

chosen MQTT and LwM2M projects respectively. As written in Chapter 5.2.3, the 

protocols are configured to operate with the same cipher suites and standard version, 

TLS and DTLS 1.2. Although the no security mode is hardly used in real-world 

implementations, it helps recognizing the trade-off between performance and safety 

provided by the measurements. The third variable regards typical IoT device activities 

when interacting with a server. The thesis focuses on four phases: 

• Initial Connection 

• Single Device to Server Message with payload sizes of 100, 200, 400, 800, 

1600 and 3200 bytes 

• Steady-State Update 

• Mobility 

The Initial Connection consists in a DTLS/TLS handshake plus a protocol-layer 

registration: either LwM2M Register operation or MQTT Connect followed by the related 

responses. The single Device to Server Message corresponds to either a LwM2M 

notification, a NON CoAP Post following an observe request by the server, or to an MQTT 

publish with QoS 0. Please notice that for the scope of this experiment the MQTT publish 

only reaches the broker. For this phase the experiment considers 6 kind of messages 

according to the payload involved: 100, 200, 400, 800, 1600 and 3200 bytes. The Steady-

State Update is on the other hand either a periodical LwM2M update operation or an 

MQTT PING request. Please consider the difference between the two actions. In the first 

one the client performs an abbreviate handshake with the server using CID, while in the 

second one the client communicates a keep-alive message. Although diverse, Update 

and PING are compared with each other to once again deliver a real-world use-case 

where a device signalizes its state. The Mobility experiment diverges from the previous 

phases. In fact, it is a one-shot test where the device is immersed in an urban context. 

Using private or public transportation the modem moves within a city either covered by 

LTE-M or NB-IoT. The result should give an initial answer about the protocols’ 

performances in a dynamic scenario. 
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Thanks to the tools described in Chapter 4.7, the measurements of the various scenarios 

defined above consisted in the following analysis: 

• Packet Capture: 

o Packet Loss 

o Bytes Exchanged 

o Packets Exchanged 

• Energy Consumption 

The Packet Captures take place at server or broker side. Only during the Mobility Test 

packets are to be also captured at client-side. The Packet Loss corresponds for LwM2M 

to the packets which did not reach the server while for MQTT to the ones which were 

retransmitted before reaching either client or server. The Loss does not include duplicate 

packets. The Packets Exchanged is the number of packets which leave and reach the 

server including retransmissions and duplicates. The Byte Exchanged, on the other hand, 

is the sum of the packets exchanged length for a specific capture. Captures are limited 

to the time-frame in which a power measurement is performed. With Energy 

Consumption, this work defines the average energy consumed by the extension board 

(see Chapter 4.4) as long as a single action takes place. An action corresponds to 

handshake and protocol connection for the Initial Connection, packet send and related 

confirmations (applicable just to MQTT) for Single Device to Server Message as well as 

10- and 25-minutes measurements for Steady-State Update and Mobility. The 

measurements are repeated 10 times and the evaluations report on average values for 

each Initial Connection and Single Device to Server Message scenario. 

5.4 Measurements Details 

The measurements took place between 13th and 23rd April 2021. The first part focused 

on LTE-M. For this purpose, the Cat-M1 modem connected to a testing network operated 

by Orange a.s. in Bratislava, Slovakia. For the Initial Connection, Single Device to Server 

Message and Steady-State phases, the device always remained at the same location in 

the city in a static mode without any antenna-attenuator. The research averages packet 

captures and average energy consumption results, obtained by performing 10 

measurements for each specific configuration. The next section defines these more in 

detail. The LTE-M mobility test took place on 16th April 2021 travelling by public 

transportation within the city-borders for a 50 minutes total time-frame. On the other hand, 

for the NB-IoT part the modem used the access provided by Vodafone Italia in Milan, 

Italy. The conditions were identical as the one described for LTE-M, with the only 

difference that the signal conditions were different (please refer to Chapter 5.2.1 for more 

information). This time the mobility measurements were conducted on 23rd April 2021 

from a moving car travelling again within the city-borders. For both dynamic experiments 

MQTT and LwM2M with PSK are the only two considered scenarios. 

Table 5.3 reports all of the tests performed and later analyzed in Chapter 6. These are 

completed for both LTE-M and NB-IoT. The scenarios are primarily divided according to 

the device activity or phase. For every of these the device executes LwM2M and MQTT 

clients in distinct moments with different levels of security: noSec, PSK and Cert. Please 

refer to Table 6.8 to comprehend how to set the flags in the LwM2M client in order to 

reproduce the experiment. In line with the corresponding scenario, there are then 

additional configurations like the DTLS or TLS Version and Cipher Suites. Data interval 

and payload size refer primarily to the Single Device to Server Message activity and 

secondarily to the Mobility measurements. Finally, the Update or PING interval is relevant 
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in both Steady-State Update and Mobility phases. As mentioned in the previous section, 

every specific case (excluding the Mobility and Steady-State Update which are one-shot 

for respectively 25 and 10 minutes) consist of 10 distinct measurements based on events’ 

(data transmission) logs and current peaks. The average energy consumption analysis’ 

as well as the packet capture’s results are then averaged to give an overview about the 

outcome, which is presented in Chapter 6. 

Phase Protocol Security DTLS/

TLS  

Ver-

sion 

Cipher 

Suite 

Data Interval 

(s) 

Payload 

Size 

(bytes) 

Update/PING 

Interval (s) 

Initial 

Connec-

tion 

LwM2M 
noSec 

1.2 

- 

- - - 

MQTT 

LwM2M 

PSK 

TLS_PS

K_WITH

_AES_1

28_CCM

_8 
MQTT 

LwM2M 
Cert 

ECDHE-

ECDSA-

AES128-

GCM-

SHA256 MQTT 

Single 

Device 

to 

Server 

Mes-

sage 

LwM2M 

noSec - 

15 

100 

200 

400 

800 

1600 

3200 

- 

MQTT 

100 

200 

400 

800 

1600 

3200 

LwM2M 

PSK 

TLS_PS

K_WITH

_AES_1

28_CCM

_8 

100 

200 

400 

800 

1600 

3200 

MQTT 

100 

200 

400 

800 

1600 

3200 
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LwM2M 

Cert 

ECDHE-

ECDSA-

AES128-

GCM-

SHA256 

100 

200 

400 

800 

1600 

3200 

MQTT 

100 

200 

400 

800 

1600 

3200 

Steady-

State  

Update 

LwM2M 

noSec - 

- - 

15 

60 

MQTT 

15 

60 

LwM2M 

PSK 

TLS_PS

K_WITH

_AES_1

28_CCM

_8 

15 

60 

MQTT 

15 

60 

LwM2M 

Cert 

ECDHE-

ECDSA-

AES128-

GCM-

SHA256 

15 

60 

MQTT 
15 

60 

Mobility 

LwM2M 

PSK 

TLS_PS

K_WITH

_AES_1

28_CCM

_8 

15 400 60 

MQTT 

Table 5.3: Experiments' scenarios and configuration 
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6 Results and Analysis 

This Chapter provides the experimental results and their evaluation. The four sections 

match four IoT devices’ activities: Initial Connection, Single Device to Server Message, 

Steady-State Update and Mobility. 

6.1 Initial Connection 

Figure 6.1 shows the average bytes transferred between Server/Broker and Client during 

Initial Connection. The variation in percentage refers to the left-neighbor bar. In both LTE-

M and NB-IoT, increasing the security level increases the transmitted data (the horizontal 

axis alternates MQTT and LwM2M with their level of securities). This happens because 

adding security-complexity translates into more encrypted data as well as more 

exchanged information. Cipher suites, certificates and key exchange are for example 

some of the blocks needed by both client and server for authentication when using DTLS 

with certificates. With PSK in comparison, only the client must send the key exchange 

while certificates are not involved. For LTE-M, overall LwM2M transfers in average 82% 

less bytes than MQTT’s equivalent while in NB-IoT the difference reduces to 61%. Being 

a connectionless protocol, UDP allows keeping a lower bytes average than in TCP during 

initial connection. The cause is visible in Figure 6.2 and Figure 6.3 where MQTT needs 

more packets than each LwM2M’s security-equivalent. There are also several MQTT 

packet losses occurring, culminating with MQTT Cert under NB-IoT with 3,6 average 

packet losses. These represent another reason of traffic-over-the-air in MQTT: every 

packet whose acknowledgment does not arrive at destination on time is retransmitted. 

 

Figure 6.1: Average Bytes Exchanged during Initial Connection 

Moreover, in Figure 6.1 there is an overall increase of bytes transferred in NB-IoT rather 

than in LTE-M which is mostly visible for LwM2M with Certificates (Cert) variating 

between 3219 and 5513 bytes. The same appears in Figure 6.2 and Figure 6.3 which 

also show a variation between the two access technologies: there is again a general 

growth in NB-IoT packets still mostly involving LwM2M Cert (from 13 in LTE-M to 21 in 

NB-IoT). This phenomenon has to do with the less stringent latency requirements in NB-

IoT compared to LTE-M (Chapter 2.3). The transmission between peers takes longer and 

timeouts at both LwM2M client and server are often exceeded. The proof of this is in 

Figure 6.3, where LwM2M Cert in NB-IoT has a 7,7 average packet losses. As explained 

in Chapter 4.8, the experiment runs with an already adjusted timeout period of 2 seconds 

due to the late response probably caused by the DTLS’ Java library that is not adapted 
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for constrained devices. This timeout period does not seem to be enough for NB-IoT. In 

fact, Table 6.1 shows the one packet capture for LwM2M Cert under NB-IoT. Excluding 

packets 1-5 which follow a different timeout configuration, packets 8-13 are sent and 

received twice. The reason is that packet 6 (server hello) did not receive an on-time 

response. The client certificate (packet 8) arrived with 177 ms delay indeed. Therefore, 

NB-IoT’s extra latency combined with the constrained-devices unfriendly Java library 

causes higher transmission durations in NB-IoT’s experiments, especially visible in 

LwM2M Cert. MQTT, on the other hand, utilizes OpenSSL, a TLS C library which shows 

better performances with certificates in constrained devices. This feature allows faster 

responses from the client. Nevertheless, as reported in Figure 6.3, 4 lost packets affect 

MQTT Cert, but only due to NB-IoT’s high latency. 

 

Figure 6.2: LTE-M - Average Packets Exchanged during Initial Connection 

 

 

Figure 6.3: NB-IoT - Average Packets Exchanged during Initial Connection 
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No. Time (s) Source Destination Protocol Length 

(bytes) 

Info 

1 0.000000000 Client Server DTLSv1.2 156 Client Hello 

2 0.000419048 Server Client DTLSv1.2 102 Hello Verify Request 

3 0.486722738 Client Server DTLSv1.2 156 Client Hello 

4 0.487169565 Server Client DTLSv1.2 102 Hello Verify Request 

5 0.599508005 Client Server DTLSv1.2 188 Client Hello 

6 0.604988258 Server Client DTLSv1.2 1024 Server Hello, Certificate, 

Server Key Exchange, Certifi-

cate Request, Server Hello 

Done 

7 2.605429974 Server Client DTLSv1.2 1024 Server Hello, Certificate, 

Server Key Exchange, Certifi-

cate Request, Server Hello 

Done 

8 2.777431463 Client Server DTLSv1.2 677 Certificate 

9 2.865512198 Client Server DTLSv1.2 133 Client Key Exchange 

10 3.446252773 Client Server DTLSv1.2 141 Certificate Verify 

11 3.446360076 Client Server DTLSv1.2 60 Change Cipher Spec 

12 3.594256505 Client Server DTLSv1.2 110 Connection ID 

13 3.594982537 Server Client DTLSv1.2 117 Change Cipher Spec, En-

crypted Handshake Message 

14 4.068979341 Client Server DTLSv1.2 677 Certificate 

15 4.157390521 Client Server DTLSv1.2 133 Client Key Exchange 

16 4.389119874 Client Server DTLSv1.2 141 Certificate Verify 

17 4.389195438 Client Server DTLSv1.2 60 Change Cipher Spec 

18 4.536901658 Client Server DTLSv1.2 110 Connection ID 

19 4.538086667 Server Client DTLSv1.2 117 Change Cipher Spec, En-

crypted Handshake Message 

20 4.762286032 Client Server DTLSv1.2 231 Connection ID 

21 4.763692673 Server Client DTLSv1.2 105 Application Data 

Table 6.1: Packet Capture of LwM2M Cert in NB-IoT 

By reporting the average energy consumptions through box-plots, Figure 6.4 shows a 

relevant increase in energy consumption within NB-IoT. For MQTT noSec for example in 

LTE-M the mean is 76.31 µWh while in NB-IoT 214.00 µWh. In order to investigate this 

more detail, Figure 6.6 illustrates energy consumption against the transmission duration 

using a scatter plot of all measurement samples, in both cellular technologies. LTE-M 

operates with compact Initial Connections durations approximately between 300 and 

3200 ms while NB-IoT has a higher and broader extension between 700 and 9600 ms. 

This enlightens not only its worse latency performances but also its unpredictability: NB-

IoT’s sample points are more distant from each other than LTE-M’s. Moreover, the 

transmission duration is directly proportional to the average energy consumption. A 

higher duration causes a greater consumption. This explains the results in Figure 6.4. 

Additionally, LTE-M’s and NB-IoT’s experiments took place in two different locations. This 

might have also influenced the performances. Nevertheless, the analysis of the signal 

conditions is out of this thesis’ scope and was not further investigated. 
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Figure 6.4: Average Energy Consumed during Initial Connection 

Finally, once again the LTE-M energy consumptions box-plots in Figure 6.4 depict a 

higher average energy consumptions for LwM2M Cert rather than MQTT Cert. This is 

again due to LwM2M Cert the higher average initial connection duration in LTE-M as 

shown in Figure 6.5. The explanation relates again to Leshan’s DTLS library, 

Californium/Scandium. It is designed as a server-side Java solutions for machines with 

multiple CPU cores that help handling many requests simultaneously [37]. During the 

experiment, the captures show a consistent delay by the client when delivering packets 

during the DTLS handshake. Nevertheless, because of the latency requirements in NB-

IoT, MQTT Cert performs worse in terms of duration than LwM2M Cert, as illustrated in 

Figure 6.5. MQTT Cert variates its duration from 1600 in LTE-M to almost 6000 ms in 

NB-IoT. The causes here are not only the higher quantity of packets and bytes involved 

compared to LwM2M Cert, but also the multiple average packet losses and timeout 

retransmissions as described previously in Figure 6.2 and Figure 6.3. 

 

Figure 6.5: Average Duration during Initial Connection 
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Figure 6.6: Relationship Duration vs Average Energy Consumption in LTE-M and NB-IoT 

6.2 Single Device to Sever Message 

Figure 6.7 and Figure 6.8 illustrate the average energy consumptions occurring when the 

modem transmits a single message with given payload 10 times in regular intervals of 15 

seconds. The energy values refer to the time-frame when the device sends and receives 

all of the data necessary to complete the transfer. In LwM2M, they consist either in a 

single CoAP NON message if the payload does not exceed CoAP’s Maximum 

Transmission Unit (MTU) of 1024 bytes or in multiple packets. This last case is called 

Block-Wise Transfer. On the other hand, MQTT operates in QoS 0 dealing with a 

minimum of 3 packets (three-way-handshake). 

 

Figure 6.7: LTE-M - Average Energy Consumption during Single Device to Server Message with variable payload 
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Figure 6.8: NB-IoT - Average Energy Consumption during Single Device to Server Message with variable payload 

From the graphs, there are two clear trends. First, higher payloads correspond to higher 

energy consumptions. Secondly, with payloads between 100 and 800 bytes the LwM2M 

client consumes less average energy than MQTT with an equivalent level of security. For 

example, with 800 bytes payload, MQTT PSK uses +45 % average energy than LwM2M 

PSK. Contrarily with payloads higher than 800 bytes, MQTT outperforms LwM2M; for 

3200 bytes payload, MQTT Cert consumes -51 % average energy than LwM2M Cert. 

The reason for this may become clear analyzing Figure 6.9 and Figure 6.10: the average 

number of packets involved in LwM2M for payloads equal to 1600 and 3200 bytes to send 

one single message is respectively 7 and 13 for both LTE-M and NB-IoT. The reason is 

the CoAP Block-Wise operation. The original payload is divided into multiple parts 

according to the library used. In this case, Leshan divides a 1600 bytes payload in one 

CoAP NON and three CON messages. These latter require a confirmation by the server 

and cause therefore an extra 3 packets being delivered to the client. For 3200 bytes 

payload there is 1 NON and 6 CON messages. This observation confirms the conclusions 

in the paper “Performance Evaluation of M2M Protocols Over Cellular Networks in a Lab 

Environment”: 

"Especially in the case of LTE the transmission time depends not only 

on the total amount of data, but also on the exact sequencing of data-

transfer. This has been clearly observed in the evaluation of CoAP. Its 

implementation of reliable data exchange is not suitable for the trans-

mission of large payloads over cellular networks. Protocols based on 

TCP achieve a better performance due to TCP-features like window-

ing." [38, p. 6] 

An interesting result regards NB-IoT MQTT Cert - 1600 bytes transmission, which has 

been affected for several repetitions by a cellular link interruption. The proof of it, is the 

presence in Figure 6.9 and Figure 6.10 of a relatively high packet loss rate: for a total of 
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54 packets, 7 of them got lost. This introduced retransmissions, delays, and therefore 

higher average energy consumptions. 

Once again, the average energy consumptions in NB-IoT reach higher values than in 

LTE-M. Despite the already mentioned reasons for the Initial Connection Experiment 

(higher latency in NB-IoT, higher duration as well as different signal conditions for LTE-

M and NB-IoT), another singularity took place. The current consumption for the Single 

Device to Server Message experiment reached values above 350 mA for data-transfer. 

According to the official modem’s data-sheet, the Quectel BG96 consumes a typical 

current of 157 mA operating in NB-IoT band 20 [33]. Also, adding 25 mA for LEDs and 

regulation losses, would not explain the peaks above 300 mA. It is not clear if the signal 

conditions itself may have caused the unexpected performance or if the reasons lies in 

other aspects. 

 

Figure 6.9: LTE-M - Average Packets Transmission during Single Device to Server Message with variable payload 

 

Figure 6.10: NB-IoT - Average Packets Transmission during Single Device to Server Message with variable payload 

Finally, Figure 6.11 shows the average bytes within LTE-M and NB-IoT. It depicts a very 

similar behavior in both access technologies. This is because the notification operation 

in LwM2M (single data-transfer triggered by a server-observation) and the publish in 

MQTT are affected by much more relaxed time-outs periods than for the Initial Connection 

and handshake phases. The outcome is the almost absence of retransmissions (except 

for MQTT Cert – 1600 bytes) and therefore of added traffic-over-the-air. 
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Figure 6.11: Average Bytes Transmission during Single Device to Server Message with variable payload 

6.3 Steady-State Update 

Whenever the device stops transmitting data it enters a so-called steady-state phase. In 

order to keep the actual connection to the server, the client needs to signalize its status 

by sending periodical messages. In LwM2M, the client performs the Update operation 

while in MQTT the most comparable action is the PING. Although they have different 

purposes, because there are no more similar equivalent operations between the 

protocols, the experiment Steady-State Update experiment chooses to compare Update 

and PING. For more information please refer Chapter 5.3. The two update intervals 

selected for the 10 minutes measurements were 15 and 60 seconds. 

Figure 6.12 and Figure 6.13 illustrate how the number of bytes exchanged varies 

according to protocol and security method used. LwM2M always outperforms MQTT in 

terms of traffic-over-the-air. In some cases, MQTT uses more than 40 % more bytes than 

LwM2M’s security-equivalent (the percentages in the graphs corresponds in each 

protocol/security case to the variation with their left-neighbor). There is also an increase 

between different security-levels within the same protocol, i.e. in LTE-M’s 15 seconds 

update interval, LwM2M Cert involves 8120 bytes while LwM2M PSK just 7480. Thus, 

the encryption complexity influences the packet length. This holds true for any case but 

LTE-M’s 60 seconds update interval where MQTT Cert just needs 2600 bytes while 

MQTT PSK 2671. Another important observation regards DTLS. Even though LwM2M’s 

Update operation in the PSK and Cert cases represents a re-handshake (please find 

more information in Chapters 2.1.9 and 5.2.3) which may add complexity, CID minimizes 

it by obsoleting many DTLS handshakes. The positive effects are visible from Figure 6.12 

and Figure 6.13: although it does not carry any handshake purposes, MQTT’s PING still 

requires greater exchanges of bytes than LwM2M. The reason is its three-way 

communication. Please note that MQTT does not need a re-handshake like in DTLS, 

since TCP/TLS based protocols are connection-oriented and perform therefore return-

routability checks as part of any connection establishment [39, p. 22]. 
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Figure 6.12: Average Bytes Exchanged for a 15 seconds Update Interval 

 

Figure 6.13: Average Bytes Exchanged for a 60 seconds Update Interval 

The energy consumption analysis in Figure 6.14 for the 15 seconds update interval 

depicts once again the better performances achieved by LwM2M. As for the Initial 

Connection in Chapter 6.1 the network signal quality and NB-IoT’s larger latencies also 

influenced this experiment. Nevertheless, one may notice lower average energy results 

in NB-IoT than in LTE-M. These are mainly caused by the diverse DRX cycle length: 2.56 

s for LTE-M and 10.24 s as described in Table 5.1. A shorter DRX cycle means more 

paging windows and therefore higher average current and energy consumption. 

Because the measurements took place for a 10 minutes time-frame, all energy 

consumptions detections for the Steady-State Update were affected by the 5 s RRC 

inactivity timer in both LTE-M and NB-IoT networks. This has an enormous effect on the 

registered average energy consumptions. For each effective update-data-exchange 

which lasts between 300 and 400 ms, there is a 5 s RRC inactivity timer window. 

Therefore, the real packet-transfer part only accounts for 5.7-7.4 % of the connected state 

for each update operation. This greatly reduces the impact of the used IoT protocols 

(LwM2M and MQTT) on the energy consumption. This is especially noticeable from 

Figure 6.15: the results’ differences are sometimes too trifling to be validated. Therefore, 

the differences between the protocols performances become irrelevant for a long-term 

measurement. Various papers confirm the effect of the RRC inactivity timer. The authors 

of “Guidelines for an Energy Efficient Tuning of the NB-IoT Stack” [40] for example state 

the following: "the tuning of the RRC inactivity timer has a significant impact on the device 

energy consumption" [40, p. 9]. As explained in Chapter 2.3.9 a valid solution to this issue 

is the Release Assistant Indication (RAI). This is however only available in a limited 

number of modems and only within NB-IoT. 
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Figure 6.14: Average Energy Consumption for a 15 seconds Update Interval 

  

Figure 6.15: Average Energy Consumption for a 60 seconds Update Interval 

6.4 Mobility 

Because IoT concepts often involve dynamic scenarios like tracing, the Mobility 
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handovers and signal quality variations take place. Several not-controllable real-world 

aspects influenced the measurements: car traffic, transportation’s speed, operator’s 

coverage, and urban routes. The reader should therefore take in account the hard 

reproducibility of the presented results (for more details please refer to Chapters 5.3 and 

5.4). Like in the previous section, the RRC inactivity timer and the absence of RAI make 
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MQTT. The average energy consumption gives an idea on how the data transmissions 

impact on devices’ battery-life. Due to the higher traffic generated, MQTT has 3.77% 

greater average energy than LwM2M while using LTE-M. 

LTE-M 
Var % in respect to 

MQTT PSK 

LwM2M 

PSK 

MQTT 

PSK 

Var % in respect to 

LwM2M PSK 

Bytes Exchanged -22.80% 55086 71356 +29.54% 

Packets Exchanged -51.37% 160 329 +105.63% 

Data Packets Sent by Cli-

ent 

-2.00% 98 100 +2.04% 

Data Packets Received by 

Server 

-2.00% 98 100 +2.04% 

Packets Retransmissions 
 

- 7 
 

Average Energy  

Consumption (mWh) 

-3.64% 106 110 +3.77% 

Table 6.2: LTE-M - LwM2M vs MQTT with PSK in the Mobility Experiment 

During the second part of the measurements, which took place in Milan, Italy, while 

moving by car, the MQTT client suffered from a lack of NB-IoT coverage for a period of 

about 4 minutes. This caused on one hand high retransmission rates and packet losses. 

On the other, less traffic-over-the-air as less packets and bytes reached the server. Table 

6.3 reports for MQTT in NB-IoT less bytes and packets exchanged than in LTE-M, 

respectively 69535 and 326 against 71356 and 329. Without coverage-losses these 

results would have been unexpected due to the longer latencies as experienced for NB-

IoT in the experiment Initial Connection. The 4 minutes no-coverage-window actually did 

not prevent all of the packets to leave the client. In fact, only the data (13 packets) out of 

the keep-alive window of 60 seconds was never sent; the other packets reached the 

server once the connection was re-established. In a similar scenario, UDP-based 

protocols would have ignored all the losses but avoiding at the same time 

retransmissions. 

As for the LTE-M case, LwM2M is more efficient in terms of bytes, packets, and average 

energy consumption. Nevertheless, there are more packets and bytes involved than in 

LTE-M. The reason are the stringent time-outs and therefore packets repetitions during 

Initial Connection, Termination and Updates. This is due to the higher latency in NB-IoT. 

As mentioned in Chapter 5.2.1, the BG96 adapts to the default DRX cycle period, which 

is longer than in LTE-M’s Slovak network. The end results do not reflect this difference. 

There are lower energy consumptions in LTE-M. The reason is the following: the multiple 

transmission events (publish/notification and periodical update) followed by the 5 s RRC 

inactivation timer, left few idle mode windows where the DRX cycle might take place. The 

consequence is a low or absent influence of the DRX cycle length. As already mentioned, 

the number of retransmissions due to time-outs are the most influencing factors in terms 

of energy consumption in this case. 

Although MQTT was affected by a coverage-loss, the Mobility experiment in NB-IoT 

shows LwM2M’s better adaptability to network delays caused by higher latencies. 

Another reason for this is the concept explained in Chapter 3.2.4. LTE-M handles cell-

handovers in both idle and connected modes, while NB-IoT just in idle. This causes higher 

packet losses as well as larger battery consumptions due to retransmissions when using 

MQTT. This protocol in fact operates better in LTE-M due to the higher connection 

regularity. 
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NB-IoT  
Var % in respect to 

MQTT PSK 

LwM2M 

PSK 

MQTT 

PSK 

Var % in respect to 

LwM2M PSK 

Bytes Exchanged -16,89% 57789 69535 +20,33% 

Packets Exchanged -37,42% 204 326 +59,80% 

Data Packets Sent by Cli-

ent 

-4,00% 96 100 +4,17% 

Data Packets Received by 

Server 

+8,05% 94 87 -7,45% 

Packets Retransmissions 
 

- 56 
 

Average Energy  

Consumption (mWh) 

-4,84% 118 124 +5,08% 

Table 6.3: NB-IoT - LwM2M vs MQTT with PSK in the Mobility Experiment 
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Summary and Outlook 

The scope of this work is to support academics, enterprises, and end-users to tackle the 

following IoT challenges: limited battery-life, growing traffic-over-the-air and remote 

connectivity. Therefore, this master’s thesis investigates and compares the performances 

of LwM2M and MQTT operating in LTE-M and NB-IoT. First, the theory provides the 

details to understand the topics involved. Then, an explanation regarding hardware, 

software and network used in the research follows. Subsequently, a preliminary test of 

the tools allows to understand and adjust configurations before the measurements take 

place. In the end, comparison and evaluation are supported by a network analysis 

involving packet and bytes exchanged as well as measurements delivering the average 

energy consumption of an IoT constrained device. The experiments include a client-

server communication via LTE-M and NB-IoT during four typical IoT transmission’s 

events: initial connection, single client to server message, steady-state update, and 

mobility scenario. Moreover, the study analyzes these phases applying three different 

client-server authentication methods: no-security, PSK and certificates. 

The work shows that LwM2M transfers in average 82% and 61 % less bytes than MQTT 

respectively in LTE-M and NB-IoT during initial connection. About this matter, it turns out 

that choosing less stringent timeouts configurations as well as appropriate TLS/DTLS 

libraries for constrained devices, helps reducing energy consumptions and traffic-over-

the-air. This is especially true for NB-IoT where latencies are higher than LTE-M. 

Moreover, when sending single messages from client to server, MQTT outperforms 

LwM2M for large payload-transfer, consuming 20% less average energy. On the other 

hand, when maintaining packet lengths below LwM2M’s MTU, MQTT uses 44% more 

average energy. In general, the measurements also prove that enhancing the security 

level complexity, data-usage and energy consumptions also increase. The experiments 

also dealt with 10- and 25-minutes time-windows measurements during steady-state 

update and mobility scenarios. In both cases, the cellular networks’ non-tunable RRC 

inactivation timer made the IoT protocols’ impact, on the device’s energy consumption, 

negligible. Nevertheless, choosing a longer DRX cycle helps reducing energy 

consumptions as shown in NB-IoT for the steady-state update experiment. 

The thesis did not focus on acquiring signal quality parameters like RSSI, RSRP and 

RSRQ along with the energy consumption and packet analysis. This would be relevant 

to find a relationship between signal conditions, latency, energy consumptions and packet 

behaviors. Also, the IoT cellular coverage analysis was out of scope. Another open aspect 

is the evaluation of LwM2M and MQTT in devices enabling Power Saving Mode (PSM) 

within LTE-M and NB-IoT. A measurement lasting hours, days or even months would be 

interesting to understand the protocols’ performances exploiting additional features of 

cIoT. Moreover, as previously mentioned, there is a non-adjustable network parameter: 

the RRC inactivity timer. This highly influences the devices’ energy consumptions and is 

controlled by cellular operators. Therefore, a future research involving the Release 

Assistant Indicator (RAI) would be beneficial to understand the real performances of 

LwM2M and MQTT on longer time-intervals. Finally, version 1.2 of the OMA specification 

includes LwM2M working on top of MQTT. As of May 2021, no open-source repository 

contains this feature. Once this will become available, a further investigation may result 

beneficial for enterprises and users who are considering adopting LwM2M over MQTT. 
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Appendix 

A.  LTE-M and NB-IoT Operators 

Country Operator PLMN ID Technology Deployment Bands 

Germany Deutsche Telekom 26201 LTE-M 20, 3 

Netherlands T-Mobile Netherlands 20416 LTE-M 8 

Netherlands KPN 20408 LTE-M 20 

Netherlands Vodafone Libertel 20404 LTE-M 20 

Austria Magenta Telekom 23203 LTE-M 20, 3 

France Orange 20801 LTE-M 20 

Belgium Orange 20610 LTE-M 20 

Slovakia Orange 23101 LTE-M 20 

Switzerland Swisscom 22801 LTE-M 20 

Latvia LMT 24701 LTE-M 20 

Germany Deutsche Telekom 26201 NB-IoT 8 

Germany Vodafone 26202 NB-IoT 20 

Netherlands T-Mobile Netherlands 20416 NB-IoT 8 

Netherlands Vodafone Libertel 20404 NB-IoT 20 

Austria Magenta Telekom 23203 NB-IoT 8 

Czech Republic T-Mobile Czech 23001 NB-IoT 20 

Slovakia Slovak Telekom 23102 NB-IoT 20 

Poland T-Mobile Poland 26002 NB-IoT 20 

Croatia Hrvatski Telekom 21901 NB-IoT 20 

Hungary Magyar Telekom 21630 NB-IoT 20, 8 

Greece Cosmote 20201 NB-IoT 20 

Switzerland Swisscom 22801 NB-IoT 20 

Liechtenstein Swisscom 22801 NB-IoT 20 

Italy Vodafone 22210 NB-IoT 20 

Italy TIM 22201 NB-IoT 20 

Spain Vodafone 21401 NB-IoT 20 

United Kingdom Vodafone 23415 NB-IoT 20 

Sweden Telia 24001 NB-IoT 20 

Finland Telia 24491 NB-IoT 20, 3 

Denmark Telia 23820 NB-IoT 20, 8 

Norway Telia 24202 NB-IoT 20 
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Belgium Telenet 20620 NB-IoT 20 

Belgium Orange 20610 NB-IoT 20 

USA AT&T 310410 LTE-M 2, 4, 12 

USA T-Mobile US 310260 NB-IoT 2, 4, 12, 66 

Japan NTT DoCoMo 44010 LTE-M 1, 19 

Table 6.4: 3GPP's CIoT Operators Details [28] 

B.  AT Commands procedure for NB-IoT 

 

// NB-IoT scan mode configuration 

AT+QCFG="nwscanseq",03,1 

AT+QCFG="nwscanmode",3,1 

AT+QCFG="iotopmode",0,1 

 

// Set NB-IoT Bands to LTE Band 20 

AT+QCFG="band",0,80000,0 

 

// Define PDP context using 1NCE APN 

AT+CGDCONT=1,"IP","iot.1nce.net",, 

 

// Manual Registration to Vodafone Italia 

AT+COPS=1,2,"22210",9 

 

// Retrieve network and operator info 

AT+QNWINFO 

 
Listing 6.1: NB-IoT Modem connection procedure through AT Commands 
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C.  Sixfab Cellular IoT HAT 

 

Figure 6.16: Sixfab Cellular IoT HAT Pinout Schematics [33] 

Description Conditions Typ. Unit 

OFF State Power down 8 µA 

PSM Power Saving Mode @Real Network 10 µA 

Quiescent Current AT+CFUN=0 @Sleep State 0.8 *  

Sleep State 

DRX=1.28s @Real LTE Cat M1 Network 

DRX=1.28s @Real LTE Cat NB1 Network 

e-I-DRX=20.48s @Real LTE Cat M1 Network 

e-I-DRX=20.48s @Real LTE Cat NB1 Network 

@Real 2G Network 

1.7 * 

2.2 

1.1 

1.7 

2.0 * 

mA 

Idle State 

DRX=1.28s @Real LTE Cat M1 Network 

DRX=1.28s @Real LTE Cat NB1 Network 

e-I-DRX=20.48s @Real LTE Cat M1 Network 

e-I-DRX=20.48s @Real LTE Cat NB1 Network 

@Real 2G Network 

16 * * 

16 * 

15 * 

15 * 

15 * * 

mA 
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Description Conditions Typ. Unit 

LTE Cat M1 

data transfer 

(GNSS OFF) 

LTE-FDD B1 @23.31dBm 

LTE-FDD B2 @23.05dBm 

LTE-FDD B3 @23.09dBm 

LTE-FDD B4 @23.19dBm 

LTE-FDD B5 @23.22dBm 

LTE-FDD B8 @21.83dBm 

LTE-FDD B12 @21.88dBm 

LTE-FDD B13 @21.96dBm 

LTE-FDD B18 @23.04dBm 

LTE-FDD B19 @23.13dBm 

LTE-FDD B20 @23.07dBm 

LTE-FDD B26 @22.81dBm 

LTE-FDD B28 @22.52dBm 

LTE-TDD B39 @TBD 

220 

208 

214 

214 

210 

203 

215 

197 

212 

211 

209 

214 

215 

TDB 

mA 

LTE Cat NB1 

data transfer 

(GNSS OFF) 

LTE-FDD B1 @22.8dBm 

LTE-FDD B2 @22.6dBm 

LTE-FDD B3 @22.6dBm 

LTE-FDD B4 @22.6dBm 

LTE-FDD B5 @22.9dBm 

LTE-FDD B8 @22.7dBm 

LTE-FDD B12 @23dBm 

LTE-FDD B13 @22.9dBm 

LTE-FDD B18 @23.1dBm 

LTE-FDD B19 @22.9dBm 

LTE-FDD B20 @22.7dBm 

LTE-FDD B26 @22.8dBm 

LTE-FDD B28 @22.5dBm 

170 

171 

161 

161 

156 

170 

170 

167 

159 

155 

157 

162 

163 

mA 

Table 6.5: Sixfab Cellular IoT HAT Technical Details 

 

Notes: 

*Typical value with USB and UART disconnected. 

**Sleep state with UART connected and USB disconnected. The module can enter into 

a sleep state 

through executing AT+QSCLK=1 command via UART interface and then controlling the 

module’s 

DTR pi 

***Idle state with UART connected and USB disconnected. 

These values refer to the consumption of only the BG96 module, not the whole circuit at 

all. With the LEDs and regulation losses, it may rise to 25mA. 
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D.  Qoitech Otii Arc 

Type Min  Unit Max 

Operating environment 15 °C / 60 

°F 

 25 °C / 77 

°F 

USB Output voltage (auto range)  0.5 V  3.75 V 

USB Output voltage (locked to high current 

range) 

0.5 V  4.2 V 

USB Output voltage setting resolution  1 mV  

USB Output current  250 mA  

External Output voltage (auto range)  0.5 V  4.55 V 

External Output voltage (locked to high cur-

rent range) 

0.5 V  5.0 V 

External Output voltage setting resolution  1 mV  

External Output current, max continuous  2.5 A  

External Output current, max peak  5 A  

Accuracy Analog   ± (0.1% + 50 nA)  

Sample Rate in ±19 mA range  4 ksps  

Sample Rate in ±2.7A range  1 ksps  

Sample Rate in ±5.0 A range  1 ksps  

bandwidth (3 dB)  400 Hz  

Total accuracy  ± (0.1% + 1.5 

mV) 

 

Sample Rate  1 ksps  

Bitrate  110 bps  5.25 Mbp 

Table 6.6: Otii Arc Specs 
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E.  LwM2M Leshan’s Server and Client Flags 

Flag Explanation 

-lh,--coaphost <arg> Set the local CoAP address 

-lp,--coapport <arg> Set the local CoAP port 

-slh,--coapshost 

<arg> 

Set the secure local CoAP address 

-slp,--coapsport <arg> Set the secure local CoAP port 

-wh,--webhost <arg> Set the HTTP address for web server 

-wp,--webport <arg> Set the HTTP port for web server 

-m,--modelsfolder 

<arg> 

A folder which contains object models in OMA DDF(.xml) format 

-oc Activate support of old/deprecated cipher suites 

-cid <arg> Control usage of DTLS connection ID: 

- 'on' to activate Connection ID support (same as -cid 6) 

- 'off' to deactivate it 

- Positive value define the size in byte of CID generated. 

- 0 value means we accept to use CID but will not generated one for 

foreign peer 

-r,--redis <arg> Use redis to store registration and securityInfo 

-mdns,--pub-

lishDNSSdServices 

Publish leshan's services to DNS Service discovery 

-pubk <arg> The path to your server public key file 

-prik <arg> The path to your server private key file 

-cert <arg> The path to your server certificate or certificate chain file 

-truststore <arg> The path to a root certificate file to trust or a folder containing all the 

trusted certificates in X509v3 format (DER encoding) or trust store 

URI 

-ks,--keystore <arg> Set the key store file 

-ksp,--storepass 

<arg> 

Set the key store password 

-kst,--storetype <arg> Set the key store type 

-ksa,--alias <arg> Set the key store alias to use for server credentials 

-ksap,--keypass <arg> Set the key store alias password to use 

Table 6.7: Flags for executing the Leshan Demo Server 
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Flag Explanation 

-n <arg> Set the endpoint name of the Client 

-b If present use bootstrap 

-l <arg> The lifetime in seconds used to register, ignored if -b is used 

-cp <arg> The communication period in seconds which should be smaller 

than the lifetime, will be used even if -b is used 

-lh <arg> Set the local CoAP address of the Client 

-lp <arg> Set the local CoAP port of the Client 

-u <arg> Set the LWM2M or Bootstrap server URL 

-r Force reconnect/re-handshake on update 

-f Do not try to resume session always, do a full handshake 

-ocf activate support of old/unofficial content format 

-c <arg> Define cipher suites used 

-oc Activate support of old/deprecated cipher suites 

-cid <arg> Control usage of DTLS connection ID. 

- 'on' to activate Connection ID support (same as -cid 0) 

- 'off' to deactivate it 

- Positive value define the size in byte of CID generated. 

- 0 value means we accept to use CID but will not generated 

one for foreign peer 

-aa <arg> Use additional attributes at registration time 

-bsaa <arg> Use additional attributes at bootstrap time 

-m <arg> A folder which contains object models in OMA DDF(.xml)for-

mat 

-pos <arg> Set the initial location (latitude, longitude) of the device to be 

reported by the Location object 

-sf <arg> Scale factor to apply when shifting position 

-bs <arg> (added) Set observation Byte Size 

-i <arg> Set the LWM2M or Bootstrap server PSK identity in ascii 

-p <arg> Set the LWM2M or Bootstrap server Pre-Shared-Key in hexa 

-cpubk <arg> The path to your client public key file 

-cprik <arg> The path to your client private key file 

-spubk <arg> The path to your server public key file 

-ccert <arg> The path to your client certificate file 

-scert <arg> The path to your server certificate file 

-truststore <arg> The path to a root certificate file to trust or a folder containing 

all the trusted certificates in X509v3 format (DER encoding) or 

trust store URI 
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-cu,--certificate-usage <arg> Certificate Usage (as integer) defining how to use server certif-

icate. 

- 0: CA constraint 

- 1: service certificate constraint 

- 2: trust anchor assertion 

- 3: domain issued certificate (Default value) 

Table 6.8: Flags for executing the modified Leshan Client Demo 
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