Skip to content

Latest commit

 

History

History
 
 

contextnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context

Reference: http://arxiv.org/abs/2005.03191

ContextNet Conv Block

ContextNet Se Module

Example Model YAML Config

Go to config.yml

Usage

Training, see python examples/contextnet/train_*.py --help

Testing, see python examples/contextnet/test_*.py --help

TFLite Conversion, see python examples/contextnet/tflite_*.py --help

RNN Transducer Subwords - Results on LibriSpeech

Summary

  • Number of subwords: 1008
  • Maximum length of a subword: 10
  • Subwords corpus: all training sets
  • Number of parameters: 12,075,320
  • Number of epochs: 86
  • Train on: 8 Google Colab TPUs
  • Train hours: 8.375 days uncontinuous (each day I trained 12 epoch because colab only allows 12 hours/day and 1 epoch required 1 hour) => 86 hours continuous (3.58333333 days)

Pretrained and Config, go to drive

Epoch Transducer Loss

subword_contextnet_loss

Epoch Learning Rate

epoch_learning_rate

Error Rates

Test-clean Test batch size Epoch WER (%) CER (%)
Greedy 1 86 10.356436669826508 5.8370333164930344