forked from hitcszx/lnl_sr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
92 lines (73 loc) · 3.39 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from noise.loss import *
from torchvision import transforms
from noise.data import NoisyISIC2018
from torch.utils import data
import os
__all__ = ["get_config", "generate_data"]
CLASS_NUM = 7
# TAU, P, LAMB, RHO, FREQ = 0.5, 0.01, 5, 1.002, 1
pth_root = './Data'
class_weight = [1 for _ in range(CLASS_NUM)]
def get_config(exp_id: str):
tau, p, lamb, rho, freq = 0.5, 0.1, 5, 1.005, 1
loss_id, noise_id = exp_id.split('-')
# configure loss
if loss_id == '1':
criterion = FocalLoss(alpha=class_weight)
freq = 0
elif loss_id == '2':
criterion = SR(FocalLoss(alpha=class_weight), tau, p, lamb)
elif loss_id == '3':
criterion = GCELoss(num_classes=CLASS_NUM)
freq = 0
else:
raise ValueError("Experiment ID doesn't exist")
# configure noisy labels
noise_id = int(noise_id)
if noise_id % 2 == 0:
noise_type = 'asymmetric'
else:
noise_type = 'symmetric'
if noise_id // 2 == 0:
noise_rate = 0
elif noise_id // 2 == 1:
noise_rate = .1
elif noise_id // 2 == 2:
noise_rate = .4
else:
raise ValueError("Experiment ID doesn't exist")
return criterion, noise_type, noise_rate, rho, freq
# transforms
trans_train = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224, scale=(0.4, 1), ratio=(3/4, 4/3)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
trans_test = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def generate_data(mode, noise_type, noise_rate, batch_size, num_workers, random_seed):
if mode == 'train':
train_data = NoisyISIC2018(ann_file=os.path.join(pth_root, 'Train_GroundTruth.csv'),
img_dir=os.path.join(pth_root, 'ISIC2018_Task3_Training_Input'),
transform=trans_train, noise_type=noise_type, noise_rate=noise_rate, random_state=random_seed)
data_loader = data.DataLoader(train_data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers)
elif mode == 'test':
test_data = NoisyISIC2018(ann_file=os.path.join(pth_root, 'Test_GroundTruth.csv'),
img_dir=os.path.join(pth_root, 'ISIC2018_Task3_Training_Input'),
transform=trans_test, noise_type=noise_type, noise_rate=noise_rate, random_state=random_seed)
data_loader = data.DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
elif mode == 'valid':
valid_data = NoisyISIC2018(ann_file=os.path.join(pth_root, 'ISIC2018_Task3_Validation_GroundTruth.csv'),
img_dir=os.path.join(pth_root, 'ISIC2018_Task3_Validation_Input'),
transform=trans_test, noise_type=noise_type, noise_rate=noise_rate, random_state=random_seed)
data_loader = data.DataLoader(valid_data, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return data_loader