-
Notifications
You must be signed in to change notification settings - Fork 0
/
definition.yml
121 lines (116 loc) · 3.23 KB
/
definition.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
method:
id: oscope
name: Oscope
tool_id: oscope
source: tool
platform: R
url: https://bioconductor.org/packages/release/bioc/html/Oscope.html
license: Artistic-2.0
authors:
- given: Ning
family: Leng
email: lengning1@gmail.com
ORCID: 0000-0003-3641-729X
github: lengning
manuscript:
doi: 10.1038/nmeth.3549
google_scholar_cluster_id: '6169309172636415425'
publication_date: '2015-08-24'
container:
url: https://github.com/dynverse/ti_oscope
docker: dynverse/ti_oscope
wrapper:
type: cyclic_trajectory
topology_inference: fixed
trajectory_types: cycle
input_required: counts
parameters:
- id: alternative_median
type: logical
default: false
description: |-
If alternative = TRUE, the alternative version of median normalization will be applied.
The alternative method is similar to median-by-ratio normalization, but can deal with
the cases when all of the genes/isoforms have at least one zero counts (in which case
the median-by-ratio normalization will fail).
- id: filter_genes
type: logical
default: true
description: |-
Whether or not to filter the genes using the CalcMV function.
- id: mean_cut
description: |-
It is suggested to apply Oscope on genes with high mean and high variance.
By default, the lower boundary is specified as 100, consequently only genes
with mean > 100 will be used. The CalcMV function will fit a linear regression
on log(variance)~log(mean) on these genes. Genes with variance above this
line are considered as the high mean high variance genes.
type: integer_range
default:
- 100
- 100000000
lower_distribution:
type: expuniform
lower: 10
upper: 100
upper_distribution:
type: expuniform
lower: 100
upper: 100000000
- id: qt
description: |-
Thresholds for outlier adjustment. For each gene/isoform, values <= qt1 th
quantile (>= qt2 th quantile) will be pushed to qt1 th quantile (qt2 th quantile)
prior to the scaling. default values are 0.05 and 0.95.
type: numeric_range
default:
- .05
- .95
lower_distribution:
type: uniform
lower: 0
upper: 1
upper_distribution:
type: uniform
lower: 0
upper: 1
- id: quan
type: numeric
default: .95
distribution:
type: uniform
lower: 0
upper: 1
description: Only gene pairs with similarity score >= quan th quantile will be considered in the clustering analyses.
- id: ndg
type: integer
default: 3
distribution:
type: uniform
lower: 1
upper: 10
description: degree of polynomial.
- id: nchun
type: integer
default: 4
distribution:
type: uniform
lower: 1
upper: 10
description: number of starting points for polynomial fitting.
- id: niter
type: integer
default: 20000
distribution:
type: expuniform
lower: 1000
upper: 1000000
description: The 2-opt algorithm will stop if N iterations has been performed or if the optimal order
- id: ncthre
type: integer
default: 1000
distribution:
type: expuniform
lower: 100
upper: 100000
description: no description was found