
Andreas Leicher
CTO @mapcase #rails, #golang, #agile, #startups, #devops, #cloud, #mountainbike, #snowboard…
Jan 28, 2015 · 5 min read

Follow

Should I use Heroku or AWS?
And what about hosting your own machines?

Everyone running web projects, no matter whether it is a pure API, or

a full fledged web application, will come to the point of having to host

their service. After (carefully) selecting your software stack (Ruby on

Rails vs. Node.js vs. Django vs. etc.) you need to make your

beautifully crafted application available to the world. There are

multiple options available today, and while this overview is not

complete, I hope it gives you a first idea on some of the options.

I will provide a short overview on Heroku, which offers Platform as a

Service, Amazon’s AWS, offering Infrastructure as a Service, and

hosting your own machines. This list is neither complete, nor does it

represent a specific recommendation of the one over the other,

consider it a personal opinion based on my own experience.

IaaS vs. PaaS

Before anyone jumps in saying, that this is comparing apples to

oranges, yes, you are right. Infrastructure as a Service, IaaS for short,

is a type of cloud computing, where the provider (AWS in this case)

offers computing resources (virtualized) over the internet. Think of it

as renting a machine somewhere, without taking care of the wires,

electricity, hardware, etc.

Platform as a Service, PaaS as provided for example by heroku, also

handles the infrastrcuture operations for you. So you don’t need to

worry about the different components to build up your infrastructure

(load balancers, machines, etc.) but can instead very often deploy

your whole application with a simple git push.

Amazon AWS vs. Heroku

So if you are willing to have parts of your server infrastructure

outsourced to another company, read on. If not, skip to the end, to

check my recommendations if you run your own servers.

AWS

https://medium.com/@aleicher?source=post_header_lockup
https://medium.com/@aleicher?source=post_header_lockup
https://www.heroku.com/
http://aws.amazon.com/
http://aws.amazon.com/

As mentioned, AWS requires you to take care of setting up your load

balancer(s), installing the right software stack on your EC2 instances,

configuring your databases, and so on. You also should implement

and configure your deployment process, e.g. by using something like

capistrano.

To maintain the software on your instances, I highly recommend to

not install software manually on your instances, which might lead to

different configurations on different machines, etc. My

recommendation is to use a proper provisioning toolchain, like

Puppet, Chef, or Urknall from the great team at dynport in Hamburg.

Urknall is a Go based ‘Opinionated provisioning tool for clever

developers’. In addition (and recommended by AWS cloud architects)

you should take a serious look at AWS Cloudformation.

Cloudformation allows you to write templates to describe your

infrastructure at AWS. So with Cloudformation you can provide a

proper documentation of your infrastrcuture in code, and make sure

that you can bring it up with exactly the same configuration you did

initially.

The cost of running AWS is less than on heroku, as you are ‘only’

paying for the infrastructure. Depending on the instance type, prices

start as low as $0.014 per hour for a t2.micro instance or $0.056 per

hour for the production ready t2.medium instance.

Heroku

Heroku takes away all the pain of installing software, maintaining it,

monitoring the software for required updates, setting up your

deployments, etc. Sounds like magic? Feels a bit like it, when you use

it for the first time. No wonder that heroku is suggested in a lot of

tutorials. I also recommend it in my lectures on web application

development. It just works and allows you to quickly get your web

application online for the world to see and play with it. And they offer

a free tier as well, making it great to just test your app.

Need more performance? Need a larger Postgres database? Want to

add Redis to your stack? Most of the software which requires you to

setup a new instance, provision it, configure it, etc. on AWS can be

added on heroku with a click or via the command line. Scaling your

performance is just a matter of adding more of the so called dynos.

So why isn’t everyone using heroku then? As always, there are

mutliple reasons. One is cost. As you get all the platform and software

as a service, you also pay for that. So you should calculate the extra

http://aws.amazon.com/
https://github.com/capistrano/capistrano
http://puppetlabs.com/puppet/puppet-open-source
https://www.chef.io/chef/
http://urknall.dynport.de/
http://www.dynport.de/
https://golang.org/
http://aws.amazon.com/cloudformation/

cost in case that your infrastructure grows, and compare that to the

cost of setting up your AWS infrastructure.

Also some people might feel uncomfortable with giving heroku their

code, and sharing it with others on the same instance (isolated with

heroku’s dyno isolation).

Running your own?

Not every application is suitable for running at a cloud provider.

Sometimes there might be legal concerns, or requirements, that force

you to run your own datacenters, host your own servers, etc. It might

also look cheaper at first sight, but you have to consider the extra

effort for administration of the machines. That 2 year old harddisk

stops working on a Sunday morning? You are responsible for getting

the system up and running and hopefully can find a replacement disk

which you can then integrate into the RAID, etc. With AWS or heroku,

things like this are completely hidden and you can enjoy your

breakfast with your family on that same Sunday morning.

So what?

Use heroku:

for small personal projects that you want to show the world

as a freelancer to show off your portfolio as working apps (most

of the time the free dyno plan is enough)

if you are an agency, need to focus on delivering a (web)

application, and promise the customer to take full care of the

operations and do not have a specialist on board

if you need to get started very quickly and do not want to have

the overhead of managing systems and do not need the full

freedom to do so

if you are a student/learning a new framework and just want to

play around

Use AWS:

if you are an agency and you can afford to have an expert in

devops

for production load with SLA’s

•

•

•

•

•

•

•

if you need additional control over your infrastructure, such as

software versions, specific patches, etc.

if you can afford to spend some time on devops

Both, Amazon AWS and Heroku have signed the US/EU Safe Harbor

agreement on data privacy. Here you’ll find Amazon’s privacy

statement and here is Heroku’s privacy statement.

Use hosted servers or your own infrastructure:

if you can afford a good amount of time on devops and

administration

if you are legally required to do so

if you need to get the very last bit of performance out of the

hardware

if you want to sit in a server room, tearing your hair on a Sunday

morning

Note: this post has been edited on Feb, 3rd 2015, to reflect the comments

from readers Dan Peterson and Christian Weyer. Thanks for your input!

Further reading:

https://stackoverflow.com/questions/9802259/why-do-people-use-

heroku-when-aws-is-present-whats-distinguishing-about-heroku

•

•

•

•

•

•

http://aws.amazon.com/privacy/
https://www.heroku.com/policy/privacy
https://twitter.com/dpiddee
https://twitter.com/chrisweyer
https://stackoverflow.com/questions/9802259/why-do-people-use-heroku-when-aws-is-present-whats-distinguishing-about-heroku

