-
Notifications
You must be signed in to change notification settings - Fork 66
/
argo2_dataset.py
537 lines (449 loc) · 20.9 KB
/
argo2_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import copy
import pickle
import argparse
import os
from os import path as osp
import torch
from av2.utils.io import read_feather
import numpy as np
import multiprocessing as mp
import pickle as pkl
from pathlib import Path
import pandas as pd
from ..dataset import DatasetTemplate
from .argo2_utils.so3 import yaw_to_quat, quat_to_yaw
from .argo2_utils.constants import LABEL_ATTR
def process_single_segment(segment_path, split, info_list, ts2idx, output_dir, save_bin):
test_mode = 'test' in split
if not test_mode:
segment_anno = read_feather(Path(osp.join(segment_path, 'annotations.feather')))
segname = segment_path.split('/')[-1]
frame_path_list = os.listdir(osp.join(segment_path, 'sensors/lidar/'))
for frame_name in frame_path_list:
ts = int(osp.basename(frame_name).split('.')[0])
if not test_mode:
frame_anno = segment_anno[segment_anno['timestamp_ns'] == ts]
else:
frame_anno = None
frame_path = osp.join(segment_path, 'sensors/lidar/', frame_name)
frame_info = process_and_save_frame(frame_path, frame_anno, ts2idx, segname, output_dir, save_bin)
info_list.append(frame_info)
def process_and_save_frame(frame_path, frame_anno, ts2idx, segname, output_dir, save_bin):
frame_info = {}
frame_info['uuid'] = segname + '/' + frame_path.split('/')[-1].split('.')[0]
frame_info['sample_idx'] = ts2idx[frame_info['uuid']]
frame_info['image'] = dict()
frame_info['point_cloud'] = dict(
num_features=4,
velodyne_path=None,
)
frame_info['calib'] = dict() # not need for lidar-only
frame_info['pose'] = dict() # not need for single frame
frame_info['annos'] = dict(
name=None,
truncated=None,
occluded=None,
alpha=None,
bbox=None, # not need for lidar-only
dimensions=None,
location=None,
rotation_y=None,
index=None,
group_ids=None,
camera_id=None,
difficulty=None,
num_points_in_gt=None,
)
frame_info['sweeps'] = [] # not need for single frame
if frame_anno is not None:
frame_anno = frame_anno[frame_anno['num_interior_pts'] > 0]
cuboid_params = frame_anno.loc[:, list(LABEL_ATTR)].to_numpy()
cuboid_params = torch.from_numpy(cuboid_params)
yaw = quat_to_yaw(cuboid_params[:, -4:])
xyz = cuboid_params[:, :3]
lwh = cuboid_params[:, [3, 4, 5]]
cat = frame_anno['category'].to_numpy().tolist()
cat = [c.lower().capitalize() for c in cat]
cat = np.array(cat)
num_obj = len(cat)
annos = frame_info['annos']
annos['name'] = cat
annos['truncated'] = np.zeros(num_obj, dtype=np.float64)
annos['occluded'] = np.zeros(num_obj, dtype=np.int64)
annos['alpha'] = -10 * np.ones(num_obj, dtype=np.float64)
annos['dimensions'] = lwh.numpy().astype(np.float64)
annos['location'] = xyz.numpy().astype(np.float64)
annos['rotation_y'] = yaw.numpy().astype(np.float64)
annos['index'] = np.arange(num_obj, dtype=np.int32)
annos['num_points_in_gt'] = frame_anno['num_interior_pts'].to_numpy().astype(np.int32)
# frame_info['group_ids'] = np.arange(num_obj, dtype=np.int32)
prefix2split = {'0': 'training', '1': 'training', '2': 'testing'}
sample_idx = frame_info['sample_idx']
split = prefix2split[sample_idx[0]]
abs_save_path = osp.join(output_dir, split, 'velodyne', f'{sample_idx}.bin')
rel_save_path = osp.join(split, 'velodyne', f'{sample_idx}.bin')
frame_info['point_cloud']['velodyne_path'] = rel_save_path
if save_bin:
save_point_cloud(frame_path, abs_save_path)
return frame_info
def save_point_cloud(frame_path, save_path):
lidar = read_feather(Path(frame_path))
lidar = lidar.loc[:, ['x', 'y', 'z', 'intensity']].to_numpy().astype(np.float32)
lidar.tofile(save_path)
def prepare(root):
ts2idx = {}
ts_list = []
bin_idx_list = []
seg_path_list = []
seg_split_list = []
assert root.split('/')[-1] == 'sensor'
# include test if you need it
splits = ['train', 'val'] # , 'test']
num_train_samples = 0
num_val_samples = 0
num_test_samples = 0
# 0 for training, 1 for validation and 2 for testing.
prefixes = [0, 1, ] # 2]
for i in range(len(splits)):
split = splits[i]
prefix = prefixes[i]
split_root = osp.join(root, split)
seg_file_list = os.listdir(split_root)
print(f'num of {split} segments:', len(seg_file_list))
for seg_idx, seg_name in enumerate(seg_file_list):
seg_path = osp.join(split_root, seg_name)
seg_path_list.append(seg_path)
seg_split_list.append(split)
assert seg_idx < 1000
frame_path_list = os.listdir(osp.join(seg_path, 'sensors/lidar/'))
for frame_idx, frame_path in enumerate(frame_path_list):
assert frame_idx < 1000
bin_idx = str(prefix) + str(seg_idx).zfill(3) + str(frame_idx).zfill(3)
ts = frame_path.split('/')[-1].split('.')[0]
ts = seg_name + '/' + ts # ts is not unique, so add seg_name
ts2idx[ts] = bin_idx
ts_list.append(ts)
bin_idx_list.append(bin_idx)
if split == 'train':
num_train_samples = len(ts_list)
elif split == 'val':
num_val_samples = len(ts_list) - num_train_samples
else:
num_test_samples = len(ts_list) - num_train_samples - num_val_samples
# print three num samples
print('num of train samples:', num_train_samples)
print('num of val samples:', num_val_samples)
print('num of test samples:', num_test_samples)
assert len(ts_list) == len(set(ts_list))
assert len(bin_idx_list) == len(set(bin_idx_list))
return ts2idx, seg_path_list, seg_split_list
def create_argo2_infos(seg_path_list, seg_split_list, info_list, ts2idx, output_dir, save_bin, token, num_process):
for seg_i, seg_path in enumerate(seg_path_list):
if seg_i % num_process != token:
continue
print(f'processing segment: {seg_i}/{len(seg_path_list)}')
split = seg_split_list[seg_i]
process_single_segment(seg_path, split, info_list, ts2idx, output_dir, save_bin)
class Argo2Dataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.split = self.dataset_cfg.DATA_SPLIT[self.mode]
self.root_split_path = self.root_path / ('training' if self.split != 'test' else 'testing')
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
self.argo2_infos = []
self.include_argo2_data(self.mode)
self.evaluate_range = dataset_cfg.get("EVALUATE_RANGE", 200.0)
def include_argo2_data(self, mode):
if self.logger is not None:
self.logger.info('Loading Argoverse2 dataset')
argo2_infos = []
for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
argo2_infos.extend(infos)
self.argo2_infos.extend(argo2_infos)
if self.logger is not None:
self.logger.info('Total samples for Argo2 dataset: %d' % (len(argo2_infos)))
def set_split(self, split):
super().__init__(
dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger
)
self.split = split
self.root_split_path = self.root_path / ('training' if self.split != 'test' else 'testing')
split_dir = self.root_path / 'ImageSets' / (self.split + '.txt')
self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None
def get_lidar(self, idx):
lidar_file = self.root_split_path / 'velodyne' / ('%s.bin' % idx)
assert lidar_file.exists()
return np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1, 4)
@staticmethod
def generate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None):
"""
Args:
batch_dict:
frame_id:
pred_dicts: list of pred_dicts
pred_boxes: (N, 7), Tensor
pred_scores: (N), Tensor
pred_labels: (N), Tensor
class_names:
output_path:
Returns:
"""
def get_template_prediction(num_samples):
ret_dict = {
'name': np.zeros(num_samples), 'truncated': np.zeros(num_samples),
'occluded': np.zeros(num_samples), 'alpha': np.zeros(num_samples),
'bbox': np.zeros([num_samples, 4]), 'dimensions': np.zeros([num_samples, 3]),
'location': np.zeros([num_samples, 3]), 'rotation_y': np.zeros(num_samples),
'score': np.zeros(num_samples), 'boxes_lidar': np.zeros([num_samples, 7])
}
return ret_dict
def generate_single_sample_dict(batch_index, box_dict):
pred_scores = box_dict['pred_scores'].cpu().numpy()
pred_boxes = box_dict['pred_boxes'].cpu().numpy()
pred_labels = box_dict['pred_labels'].cpu().numpy()
pred_dict = get_template_prediction(pred_scores.shape[0])
if pred_scores.shape[0] == 0:
return pred_dict
pred_boxes_img = pred_boxes
pred_boxes_camera = pred_boxes
pred_dict['name'] = np.array(class_names)[pred_labels - 1]
pred_dict['alpha'] = -np.arctan2(-pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
pred_dict['bbox'] = pred_boxes_img
pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
pred_dict['location'] = pred_boxes_camera[:, 0:3]
pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
pred_dict['score'] = pred_scores
pred_dict['boxes_lidar'] = pred_boxes
return pred_dict
annos = []
for index, box_dict in enumerate(pred_dicts):
frame_id = batch_dict['frame_id'][index]
single_pred_dict = generate_single_sample_dict(index, box_dict)
single_pred_dict['frame_id'] = frame_id
annos.append(single_pred_dict)
if output_path is not None:
cur_det_file = output_path / ('%s.txt' % frame_id)
with open(cur_det_file, 'w') as f:
bbox = single_pred_dict['bbox']
loc = single_pred_dict['location']
dims = single_pred_dict['dimensions'] # lhw -> hwl
for idx in range(len(bbox)):
print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f'
% (single_pred_dict['name'][idx], single_pred_dict['alpha'][idx],
bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3],
dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0],
loc[idx][1], loc[idx][2], single_pred_dict['rotation_y'][idx],
single_pred_dict['score'][idx]), file=f)
return annos
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.argo2_infos) * self.total_epochs
return len(self.argo2_infos)
def __getitem__(self, index):
# index = 4
if self._merge_all_iters_to_one_epoch:
index = index % len(self.argo2_infos)
info = copy.deepcopy(self.argo2_infos[index])
sample_idx = info['point_cloud']['velodyne_path'].split('/')[-1].rstrip('.bin')
calib = None
get_item_list = self.dataset_cfg.get('GET_ITEM_LIST', ['points'])
input_dict = {
'frame_id': sample_idx,
'calib': calib,
}
if 'annos' in info:
annos = info['annos']
loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y']
gt_names = annos['name']
gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32)
input_dict.update({
'gt_names': gt_names,
'gt_boxes': gt_bboxes_3d
})
if "points" in get_item_list:
points = self.get_lidar(sample_idx)
input_dict['points'] = points
input_dict['calib'] = calib
data_dict = self.prepare_data(data_dict=input_dict)
return data_dict
def format_results(self,
outputs,
class_names,
pklfile_prefix=None,
submission_prefix=None,
):
"""Format the results to .feather file with argo2 format.
Args:
outputs (list[dict]): Testing results of the dataset.
pklfile_prefix (str | None): The prefix of pkl files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
submission_prefix (str | None): The prefix of submitted files. It
includes the file path and the prefix of filename, e.g.,
"a/b/prefix". If not specified, a temp file will be created.
Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a dict containing
the json filepaths, tmp_dir is the temporal directory created
for saving json files when jsonfile_prefix is not specified.
"""
import pandas as pd
assert len(self.argo2_infos) == len(outputs)
num_samples = len(outputs)
print('\nGot {} samples'.format(num_samples))
serialized_dts_list = []
print('\nConvert predictions to Argoverse 2 format')
for i in range(num_samples):
out_i = outputs[i]
log_id, ts = self.argo2_infos[i]['uuid'].split('/')
track_uuid = None
#cat_id = out_i['labels_3d'].numpy().tolist()
#category = [class_names[i].upper() for i in cat_id]
category = [class_name.upper() for class_name in out_i['name']]
serialized_dts = pd.DataFrame(
self.lidar_box_to_argo2(out_i['bbox']).numpy(), columns=list(LABEL_ATTR)
)
serialized_dts["score"] = out_i['score']
serialized_dts["log_id"] = log_id
serialized_dts["timestamp_ns"] = int(ts)
serialized_dts["category"] = category
serialized_dts_list.append(serialized_dts)
dts = (
pd.concat(serialized_dts_list)
.set_index(["log_id", "timestamp_ns"])
.sort_index()
)
dts = dts.sort_values("score", ascending=False).reset_index()
if pklfile_prefix is not None:
if not pklfile_prefix.endswith(('.feather')):
pklfile_prefix = f'{pklfile_prefix}.feather'
dts.to_feather(pklfile_prefix)
print(f'Result is saved to {pklfile_prefix}.')
dts = dts.set_index(["log_id", "timestamp_ns"]).sort_index()
return dts
def lidar_box_to_argo2(self, boxes):
boxes = torch.Tensor(boxes)
cnt_xyz = boxes[:, :3]
lwh = boxes[:, [3, 4, 5]]
yaw = boxes[:, 6]
quat = yaw_to_quat(yaw)
argo_cuboid = torch.cat([cnt_xyz, lwh, quat], dim=1)
return argo_cuboid
def evaluation(self,
results,
class_names,
eval_metric='waymo',
logger=None,
pklfile_prefix=None,
submission_prefix=None,
show=False,
output_path=None,
pipeline=None):
"""Evaluation in Argo2 protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
Default: 'waymo'. Another supported metric is 'Argo2'.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
pklfile_prefix (str | None): The prefix of pkl files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
submission_prefix (str | None): The prefix of submission datas.
If not specified, the submission data will not be generated.
show (bool): Whether to visualize.
Default: False.
out_dir (str): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str: float]: results of each evaluation metric
"""
from av2.evaluation.detection.constants import CompetitionCategories
from av2.evaluation.detection.utils import DetectionCfg
from av2.evaluation.detection.eval import evaluate
from av2.utils.io import read_feather
dts = self.format_results(results, class_names, pklfile_prefix, submission_prefix)
argo2_root = self.root_path
val_anno_path = osp.join(argo2_root, 'val_anno.feather')
gts = read_feather(Path(val_anno_path))
gts = gts.set_index(["log_id", "timestamp_ns"]).sort_values("category")
valid_uuids_gts = gts.index.tolist()
valid_uuids_dts = dts.index.tolist()
valid_uuids = set(valid_uuids_gts) & set(valid_uuids_dts)
gts = gts.loc[list(valid_uuids)].sort_index()
categories = set(x.value for x in CompetitionCategories)
categories &= set(gts["category"].unique().tolist())
dataset_dir = Path(argo2_root) / 'sensor' / 'val'
cfg = DetectionCfg(
dataset_dir=dataset_dir,
categories=tuple(sorted(categories)),
max_range_m=self.evaluate_range,
eval_only_roi_instances=True,
)
# Evaluate using Argoverse detection API.
eval_dts, eval_gts, metrics = evaluate(
dts.reset_index(), gts.reset_index(), cfg
)
valid_categories = sorted(categories) + ["AVERAGE_METRICS"]
ap_dict = {}
for index, row in metrics.iterrows():
ap_dict[index] = row.to_json()
return metrics.loc[valid_categories], ap_dict
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--root_path', type=str, default="/data/argo2/sensor")
parser.add_argument('--output_dir', type=str, default="/data/argo2/processed")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_config()
root = args.root_path
output_dir = args.output_dir
save_bin = True
ts2idx, seg_path_list, seg_split_list = prepare(root)
velodyne_dir = Path(output_dir) / 'training' / 'velodyne'
if not velodyne_dir.exists():
velodyne_dir.mkdir(parents=True, exist_ok=True)
info_list = []
create_argo2_infos(seg_path_list, seg_split_list, info_list, ts2idx, output_dir, save_bin, 0, 1)
assert len(info_list) > 0
train_info = [e for e in info_list if e['sample_idx'][0] == '0']
val_info = [e for e in info_list if e['sample_idx'][0] == '1']
test_info = [e for e in info_list if e['sample_idx'][0] == '2']
trainval_info = train_info + val_info
assert len(train_info) + len(val_info) + len(test_info) == len(info_list)
# save info_list in under the output_dir as pickle file
with open(osp.join(output_dir, 'argo2_infos_train.pkl'), 'wb') as f:
pkl.dump(train_info, f)
with open(osp.join(output_dir, 'argo2_infos_val.pkl'), 'wb') as f:
pkl.dump(val_info, f)
# save validation anno feather
save_feather_path = os.path.join(output_dir, 'val_anno.feather')
val_seg_path_list = [seg_path for seg_path in seg_path_list if 'val' in seg_path]
assert len(val_seg_path_list) == len([i for i in seg_split_list if i == 'val'])
seg_anno_list = []
for seg_path in val_seg_path_list:
seg_anno = read_feather(osp.join(seg_path, 'annotations.feather'))
log_id = seg_path.split('/')[-1]
seg_anno["log_id"] = log_id
seg_anno_list.append(seg_anno)
gts = pd.concat(seg_anno_list).reset_index()
gts.to_feather(save_feather_path)