-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_utility.py
215 lines (173 loc) · 6.72 KB
/
data_utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import dataset
import torch
from collections import defaultdict
from combine_sampler import CombineSampler, KReciprocalSampler, KReciprocalSamplerInshop, ClusterSampler
import numpy as np
import os
import matplotlib.pyplot as plt
import logging
import copy
logger = logging.getLogger('GNNReID.DataUtility')
def create_loaders(data_root, num_workers, num_classes_iter=None,
num_elements_class=None, trans='norm', num_classes=None,
net_type='resnet50', bssampling=None, mode='train'):
size_batch = num_classes_iter * num_elements_class
dl_tr = get_train_loaders(data_root, num_workers, size_batch,
num_classes_iter=num_classes_iter, num_elements_class=num_elements_class,
trans=trans, num_classes=num_classes, net_type=net_type, bssampling=bssampling)
if os.path.basename(data_root) != 'In_shop':
dl_ev, dl_ev_gnn = get_val_loaders(data_root, num_workers, size_batch,
num_classes_iter=num_classes_iter, num_elements_class=num_elements_class,
trans=trans, num_classes=num_classes, net_type=net_type, mode=mode)
return dl_tr, dl_ev, None, dl_ev_gnn
else:
dl_gallery, dl_query, dl_ev_gnn = get_inshop_val_loader(data_root, num_workers,
trans=trans, num_classes=num_classes, net_type=net_type, mode=mode)
return dl_tr, dl_query, dl_gallery, dl_ev_gnn
def get_train_loaders(data_root, num_workers, size_batch, num_classes_iter=None,
num_elements_class=None, trans='norm', num_classes=None,
net_type='resnet50', bssampling=None):
# Train Dataset
if os.path.basename(data_root) != 'In_shop':
Dataset = dataset.Birds_DML(
root=data_root,
labels=list(range(0, num_classes)),
transform=trans,
net_type=net_type)
else:
Dataset = dataset.Inshop_Dataset(
root = data_root,
mode = 'train',
transform = trans,
net_type=net_type)
list_of_indices_for_each_class = get_list_of_inds(Dataset)
sampler = CombineSampler(list_of_indices_for_each_class,
num_classes_iter, num_elements_class,
batch_sampler=bssampling)
drop_last = True
dl_tr = torch.utils.data.DataLoader(
Dataset,
batch_size=size_batch,
shuffle=False,
sampler=sampler,
num_workers=num_workers,
drop_last=drop_last,
pin_memory=True)
return dl_tr
def get_val_loaders(data_root, num_workers, size_batch, num_classes_iter=None,
num_elements_class=None, trans='norm', magnitude=15,
number_aug=0, num_classes=None, net_type='resnet50', mode='train'):
# Evaluation Dataset
if data_root == 'Stanford':
class_end = 2 * num_classes - 2
else:
class_end = 2 * num_classes
dataset_ev = dataset.Birds_DML(
root=data_root,
labels=list(range(num_classes, class_end)),
transform=trans,
eval_reid=True,
net_type=net_type)
if 'gnn' in mode.split('_'):
list_of_indices_for_each_class = get_list_of_inds(dataset_ev)
sampler = CombineSampler(list_of_indices_for_each_class,
num_classes_iter, num_elements_class)
dl_ev = torch.utils.data.DataLoader(
dataset_ev,
batch_size=50,
shuffle=False,
num_workers=1,
pin_memory=True)
dl_ev_gnn = torch.utils.data.DataLoader(
dataset_ev,
batch_size=size_batch,
shuffle=False,
sampler=sampler,
num_workers=num_workers,
drop_last=True,
pin_memory=True)
elif 'pseudo' in mode.split('_'):
sampler = KReciprocalSampler(1, 7) #(num_classes_iter, num_elements_class)
dl_ev_gnn = torch.utils.data.DataLoader(
dataset_ev,
batch_size=7, #size_batch,
shuffle=False,
sampler=sampler,
num_workers=1,
drop_last=True,
pin_memory=True)
dl_ev = torch.utils.data.DataLoader(
copy.deepcopy(dataset_ev),
batch_size=64,
shuffle=False,
num_workers=1,
pin_memory=True)
else:
dl_ev = torch.utils.data.DataLoader(
dataset_ev,
batch_size=50,
shuffle=False,
num_workers=1,
pin_memory=True
)
dl_ev_gnn = None
return dl_ev, dl_ev_gnn
def get_inshop_val_loader(data_root, num_workers, trans='norm',
num_classes=None, net_type='resnet50', mode='train'):
query_dataset = dataset.Inshop_Dataset(
root = data_root,
mode = 'query',
transform = trans,
net_type=net_type,
eval_reid=True)
dl_query = torch.utils.data.DataLoader(
query_dataset,
batch_size = 150,
shuffle = False,
num_workers = 4,
pin_memory = True)
gallery_dataset = dataset.Inshop_Dataset(
root = data_root,
mode = 'gallery',
transform = trans,
net_type=net_type,
eval_reid=True)
dl_gallery = torch.utils.data.DataLoader(
gallery_dataset,
batch_size = 150,
shuffle = False,
num_workers = 4,
pin_memory = True)
if 'pseudo' in mode.split('_'):
import copy
gnn_dataset = copy.deepcopy(query_dataset)
gnn_dataset.im_paths.extend(gallery_dataset.im_paths)
gnn_dataset.ys.extend(gallery_dataset.ys)
sampler = KReciprocalSamplerInshop(1, 4)
#sampler.path_to_ind = gnn_dataset.path_to_ind
dl_ev_gnn = torch.utils.data.DataLoader(
gnn_dataset,
sampler=sampler,
batch_size = 4,
shuffle = False,
num_workers = 4,
pin_memory = True)
else:
dl_ev_gnn = None
return dl_gallery, dl_query, dl_ev_gnn
def get_list_of_inds(Dataset):
ddict = defaultdict(list)
for idx, label in enumerate(Dataset.ys):
ddict[label].append(idx)
list_of_indices_for_each_class = []
for key in ddict:
list_of_indices_for_each_class.append(ddict[key])
return list_of_indices_for_each_class
def show_dataset(img, y):
for i in range(img.shape[0]):
im = img[i, :, :, :].squeeze()
x = im.numpy().transpose((1, 2, 0))
plt.imshow(x)
plt.axis('off')
plt.title('Image of label {}'.format(y[i]))
plt.show()