forked from wcchoi/dollar-q
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutlines-dollar-q.js
421 lines (377 loc) · 14 KB
/
outlines-dollar-q.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/**
* The $P Point-Cloud Recognizer (JavaScript version)
*
* Radu-Daniel Vatavu, Ph.D.
* University Stefan cel Mare of Suceava
* Suceava 720229, Romania
* vatavu@eed.usv.ro
*
* Lisa Anthony, Ph.D.
* UMBC
* Information Systems Department
* 1000 Hilltop Circle
* Baltimore, MD 21250
* lanthony@umbc.edu
*
* Jacob O. Wobbrock, Ph.D.
* The Information School
* University of Washington
* Seattle, WA 98195-2840
* wobbrock@uw.edu
*
* The academic publication for the $P recognizer, and what should be
* used to cite it, is:
*
* Vatavu, R.-D., Anthony, L. and Wobbrock, J.O. (2012).
* Gestures as point clouds: A $P recognizer for user interface
* prototypes. Proceedings of the ACM Int'l Conference on
* Multimodal Interfaces (ICMI '12). Santa Monica, California
* (October 22-26, 2012). New York: ACM Press, pp. 273-280.
*
* This software is distributed under the "New BSD License" agreement:
*
* Copyright (c) 2012, Radu-Daniel Vatavu, Lisa Anthony, and
* Jacob O. Wobbrock. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of the University Stefan cel Mare of Suceava,
* University of Washington, nor UMBC, nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Radu-Daniel Vatavu OR Lisa Anthony
* OR Jacob O. Wobbrock BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
**/
(function(){
//
// Point class
//
// constructor
function Point(x, y, id) {
this.X = x;
this.Y = y;
this.ID = id; // stroke ID to which this point belongs (1,2,...)
}
//
// PointCloud class: a point-cloud template
//
// constructor
function PointCloud(name, points) {
this.Name = name;
this.Points = Normalize(points);
this.LUT = ComputeLUT(this.Points);
}
//
// Result class
//
// constructor
function Result(name, score) {
this.Name = name;
this.Score = score;
}
//
// Recognizer class constants
//
var NumPoints = 32;
var LUTSize = 64;
var Origin = new Point(0,0,0);
//
// Recognizer class
//
//constructor
function Recognizer(gestures) {
//
// one predefined point-cloud for each gesture
//
this.PointClouds = [];
/*
* The $P Point-Cloud Recognizer API begins here -- 3 methods: Recognize(), AddGesture(), DeleteUserGestures()
*/
this.Recognize = function(points)
{
points = Normalize(points);
var pointsLUT = ComputeLUT(points);
var score = +Infinity;
var index = -1;
for (var i = 0; i < this.PointClouds.length; i++) // for each point-cloud template
{
var d = GreedyCloudMatch(points, pointsLUT, this.PointClouds[i], score);
if (d < score) {
score = d; // best (least) distance
index = i; // point-cloud
}
}
// return (u == -1) ? new Result("No match.", 0.0) : new Result(this.PointClouds[u].Name, Math.max((b - 2.0) / -2.0, 0.0));
return (index == -1) ? new Result(null, 0.0) : new Result(this.PointClouds[index].Name, score);
};
/*
* Similar to Recognize() but instead of returning the closest match, instead it
* returns a list of matches sorted by the closest match to the farthest
this.Rank = function(points)
{
points = Normalize(points);
// For each point-cloud template
var matches = [];
for (var i = 0; i < this.PointClouds.length; i++) {
var d = GreedyCloudMatch(points, this.PointClouds[i]);
matches.push( new Result(this.PointClouds[i].Name, Math.max((d - 2.0) / -2.0, 0.0)) );
}
// Sort by score
matches.sort( function(a, b){
if(a.Score > b.Score){
return -1;
} else if(a.Score < b.Score){
return 1;
} else {
return 0;
}
});
return matches;
};
*/
}
//
// Private helper functions from this point down
//
function GreedyCloudMatch(points, pointsLUT, P, min) {
var e = 0.50;
var step = Math.floor(Math.pow(points.length, 1 - e));
var skipped = 0;
var total = 0;
for (var i = 0, indexLB = 0; i < points.length; i += step, indexLB++) {
var LB1 = ComputeLowerBound(points, P.Points, P.LUT, step);
var LB2 = ComputeLowerBound(P.Points, points, pointsLUT, step);
total++;
if (LB1[indexLB] < min) {
var d1 = CloudDistance(points, P.Points, i, min);
min = Math.min(min, d1);
} else {
skipped++;
}
total++;
if (LB2[indexLB] < min) {
var d2 = CloudDistance(P.Points, points, i, min);
min = Math.min(min, d2);
} else {
skipped++;
}
}
//console.log("skipped, total, skipped/total:", skipped, total, skipped/total);
return min;
}
function CloudDistance(pts1, pts2, start, minSoFar) {
// pts1.length == pts2.length
var unmatched = new Array(pts1.length);
var unmatchedEnd = pts1.length;
for (var k = 0; k < pts1.length; k++)
unmatched[k] = k;
var sum = 0;
var i = start;
var weight = pts1.length;
do
{
var _index = -1;
var index = -1;
var min = +Infinity;
for (var _j = 0; _j < unmatchedEnd; _j++)
{
var j = unmatched[_j];
var d = DistanceSq(pts1[i], pts2[j]);
if (d < min) {
min = d;
index = j;
_index = _j;
}
}
// REMOVE(unmatched, index)
unmatchedEnd--;
var tmp = unmatched[unmatchedEnd];
unmatched[unmatchedEnd] = unmatched[_index];
unmatched[_index] = tmp;
sum += weight * min;
if (sum >= minSoFar) {
return sum;
}
weight--;
i = (i + 1) % pts1.length;
} while (i != start);
return sum;
}
/*
* Gesture points are resampled, scaled with shape preservation, and translated to origin.
*/
function Normalize(points, shouldResample){
if(typeof(shouldResample) === "undefined") shouldResample = true;
if(shouldResample) {
points = Resample(points, NumPoints);
}
points = TranslateTo(points, Origin);
points = Scale(points);
return points;
};
function clonePoints(points){
var newPoints = [];
points.forEach(function(pt){
newPoints.push(new Point(pt.X, pt.Y, pt.ID));
});
return newPoints;
}
function Resample(points, n) {
points = clonePoints(points);
var I = PathLength(points) / (n - 1); // interval length
var D = 0.0;
var newpoints = new Array( new Point(points[0].X, points[0].Y, points[0].ID) );
for (var i = 1; i < points.length; i++)
{
if (points[i].ID == points[i-1].ID)
{
var d = Distance(points[i - 1], points[i]);
if ((D + d) >= I)
{
var qx = points[i - 1].X + ((I - D) / d) * (points[i].X - points[i - 1].X);
var qy = points[i - 1].Y + ((I - D) / d) * (points[i].Y - points[i - 1].Y);
var q = new Point(qx, qy, points[i].ID);
newpoints[newpoints.length] = q; // append new point 'q'
points.splice(i, 0, q); // insert 'q' at position i in points s.t. 'q' will be the next i
D = 0.0;
}
else D += d;
}
}
if (newpoints.length == n - 1) // sometimes we fall a rounding-error short of adding the last point, so add it if so
newpoints[newpoints.length] = new Point(points[points.length - 1].X, points[points.length - 1].Y, points[points.length - 1].ID);
return newpoints;
}
// Scale the points so they are in a normalized box with x & y = [0,1]. This makes
// comparing gestures against point clouds scale invariant
function Scale(points) {
// Find the bounding box of points
var minX = +Infinity, maxX = -Infinity, minY = +Infinity, maxY = -Infinity;
for (var i = 0; i < points.length; i++) {
minX = Math.min(minX, points[i].X);
minY = Math.min(minY, points[i].Y);
maxX = Math.max(maxX, points[i].X);
maxY = Math.max(maxY, points[i].Y);
}
// Figure out the max dimension (either the width or height is biggest)
var size = Math.max(maxX - minX, maxY - minY);
// Scale points down into a square of 1.0 x 1.0 dimensions, while maintaining
// x/y proportions
var newpoints = new Array();
for (var i = 0; i < points.length; i++) {
var qx = (points[i].X - minX) / size * (LUTSize - 1);
var qy = (points[i].Y - minY) / size * (LUTSize - 1);
newpoints[newpoints.length] = new Point(qx, qy, points[i].ID);
}
return newpoints;
}
// Translates points' so that their average position becomes the origin (ie the PointCloud's
// points are centered around the origin)
//
// NOTE: It seems the pt parameter is redundant as it's always passed an 0,0 vector
// which makes it have no effect when adding it's components below
function TranslateTo(points, pt) {
var c = Centroid(points);
var newpoints = new Array();
for (var i = 0; i < points.length; i++) {
var qx = points[i].X + pt.X - c.X;
var qy = points[i].Y + pt.Y - c.Y;
newpoints[newpoints.length] = new Point(qx, qy, points[i].ID);
}
return newpoints;
}
// Compute the average position of all the points
function Centroid(points) {
var x = 0.0, y = 0.0;
for (var i = 0; i < points.length; i++) {
x += points[i].X;
y += points[i].Y;
}
x /= points.length;
y /= points.length;
return new Point(x, y, 0);
}
// length traversed by a point path
function PathLength(points) {
var d = 0.0;
for (var i = 1; i < points.length; i++)
{
if (points[i].ID == points[i-1].ID)
d += Distance(points[i - 1], points[i]);
}
return d;
}
// Euclidean distance between two points
function Distance(p1, p2) {
var dx = p2.X - p1.X;
var dy = p2.Y - p1.Y;
return Math.sqrt(dx * dx + dy * dy);
}
function DistanceSq(p1, p2) {
var dx = p2.X - p1.X;
var dy = p2.Y - p1.Y;
return dx * dx + dy * dy;
}
function ComputeLUT(points) {
LUT = new Uint8Array(LUTSize * LUTSize);
for (var x = 0; x < LUTSize; x++) {
for (var y = 0; y < LUTSize; y++) {
var min = +Infinity;
var index;
for (var i = 0; i < points.length; i++) {
var d = DistanceSq(points[i], new Point(x, y));
if (d < min) {
min = d;
index = i;
}
}
LUT[y * LUTSize + x] = index;
}
}
return LUT;
}
function ComputeLowerBound(points1, points2, LUT, step) {
var n = points1.length;
var LB = new Array(Math.floor(n/step) + 1);
var SAT = new Array(n);
LB[0] = 0;
for (var i = 0; i < n; i++) {
var px = Math.floor(points1[i].X);
var py = Math.floor(points1[i].Y);
var index = LUT[py * LUTSize + px];
var d = DistanceSq(points1[i], points2[index]);
SAT[i] = (i === 0) ? d : SAT[i - 1] + d;
LB[0] = LB[0] + (n - i) * d;
}
for (var i = step, indexLB = 1; i < n; i += step, indexLB++)
LB[indexLB] = LB[0] + i * SAT[n - 1] - n * SAT[i - 1];
return LB;
}
var outlines = {
Point: Point,
Recognizer: Recognizer,
PointCloud: PointCloud,
Normalize: Normalize,
PathLength: PathLength,
};
if ( typeof module !== 'undefined' && typeof module.exports !== 'undefined' ) {
module.exports = outlines;
} else {
window.outlines = outlines;
}
})();