-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlnmpc_smc.py
239 lines (209 loc) · 9.27 KB
/
lnmpc_smc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import casadi as ca
import numpy as np
import math
import time
from dynamic.draw import Draw_MPC_tracking
def shift(T, t0, x0, u, x_n, f):
f_value = f(x0, u[0])
st = x0 + T*f_value
t = t0 + T
u_end = np.concatenate((u[1:], u[-1:]))
x_n = np.concatenate((x_n[1:], x_n[-1:]))
return t, st, u_end, x_n
def predict_state(x0, u, T, N):
bias = float(np.random.normal(0, 5, 1))
# bias = 0
# Parameter
d = 0.2
M = 10; J = 2
Bx = 0.5; By = 0.5; Bw = 0.6
# Cx = 0.5; Cy = 0.5; Cw = 0.6
# define prediction horizon function
states = np.zeros((N+1, 6))
states[0,:] = x0
# euler method
for i in range(N):
states[i+1, 0] = states[i, 0] + (states[i, 3]*np.cos(states[i, 2]) - states[i, 4]*np.sin(states[i, 2]))*T
states[i+1, 1] = states[i, 1] + (states[i, 3]*np.sin(states[i, 2]) + states[i, 4]*np.cos(states[i, 2]))*T
states[i+1, 2] = states[i, 2] + states[i, 5]*T
states[i+1, 3] = (0*(u[i, 0]+bias) + np.sqrt(3)/2*(u[i, 1]+bias) - np.sqrt(3)/2*(u[i, 2]+bias) - Bx*states[3])/M
states[i+1, 4] = (-1*(u[i, 0]+bias) + 1/2*(u[i, 1]+bias) + 1/2*(u[i, 2]+bias) - By*states[4])/M
states[i+1, 5] = (d*(u[i, 0]+bias) + d*(u[i, 1]+bias) + d*(u[i, 2]+bias) - Bw*states[5])/J
return states
def desired_command_and_trajectory(t, T, x0_:np.array, N_):
Bx = 0.5; By = 0.5; Bw = 0.6
# initial state / last state
x_ = np.zeros((N_+1, 6))
x_[0] = x0_
u_ = np.zeros((N_, 3))
# states for the next N_ trajectories
for i in range(N_):
t_predict = t + T*i
x_ref_ = 4*math.cos(2*math.pi/12*t_predict)
y_ref_ = 4*math.sin(2*math.pi/12*t_predict)
theta_ref_ = 2*math.pi/12*t_predict + math.pi/2
dotx_ref_ = -2*math.pi/12*y_ref_
doty_ref_ = 2*math.pi/12*x_ref_
dotq_ref_ = 2*math.pi/12
# vx_ref_ = dotx_ref_*math.cos(theta_ref_) + doty_ref_*math.sin(theta_ref_)
# vy_ref_ = -dotx_ref_*math.sin(theta_ref_) + doty_ref_*math.cos(theta_ref_)
vx_ref_ = 4*2*math.pi/12
vy_ref_ = 0
omega_ref_ = dotq_ref_
x_[i+1] = np.array([x_ref_, y_ref_, theta_ref_, vx_ref_, vy_ref_, omega_ref_])
u1_ref_ = 0*Bx*vx_ref_ - 2/3*By*vy_ref_ + 2/3*Bw*omega_ref_
u2_ref_ = math.sqrt(3)/3*Bx*vx_ref_ + 1/3*By*vy_ref_ + 2/3*Bw*omega_ref_
u3_ref_ = -math.sqrt(3)/3*Bx*vx_ref_ + 1/3*By*vy_ref_ + 2/3*Bw*omega_ref_
u_[i] = np.array([u1_ref_, u2_ref_, u3_ref_])
# return pose and command
return x_, u_
if __name__ == "__main__":
# Parameter
d = 0.2
M = 10; J = 2
Bx = 0.5; By = 0.5; Bw = 0.6
Cx = 0.5; Cy = 0.5; Cw = 0.6
T = 0.1 # time step
N = 30 # horizon length
rob_diam = 0.3 # [m]
v_max = 3.0 # linear velocity max
omega_max = np.pi/3.0 # angular velocity max
u_max = 8 # force max of each direction
opti = ca.Opti()
# control variables, toruqe of each wheel
opt_controls = opti.variable(N, 3)
u1 = opt_controls[:, 0]
u2 = opt_controls[:, 1]
u3 = opt_controls[:, 2]
# state variable: position and velocity
opt_states = opti.variable(N+1, 6)
x = opt_states[:, 0]
y = opt_states[:, 1]
theta = opt_states[:, 2]
vx = opt_states[:, 3]
vy = opt_states[:, 4]
omega = opt_states[:, 5]
# parameters
opt_x0 = opti.parameter(6)
opt_xs = opti.parameter(6)
# create model
f = lambda x_, u_: ca.vertcat(*[x_[3]*ca.cos(x_[2]) - x_[4]*ca.sin(x_[2]),
x_[3]*ca.sin(x_[2]) + x_[4]*ca.cos(x_[2]),
x_[5],
(0*u_[0] + ca.sqrt(3)/2*u_[1] - ca.sqrt(3)/2*u_[2] - Bx*x_[3])/M,
(-1*u_[0] + 1/2*u_[1] + 1/2*u_[2] - By*x_[4])/M,
(d*u_[0] + d*u_[1] + d*u_[2] - Bw*x_[5])/J])
f_np = lambda x_, u_: np.array([x_[3]*ca.cos(x_[2]) - x_[4]*ca.sin(x_[2]),
x_[3]*ca.sin(x_[2]) + x_[4]*ca.cos(x_[2]),
x_[5],
(0*u_[0] + ca.sqrt(3)/2*u_[1] - ca.sqrt(3)/2*u_[2] - Bx*x_[3])/M,
(-1*u_[0] + 1/2*u_[1] + 1/2*u_[2] - By*x_[4])/M,
(d*u_[0] + d*u_[1] + d*u_[2] - Bw*x_[5])/J])
# parameters, these parameters are the reference trajectories of the pose and inputs
opt_u_ref = opti.parameter(N, 3)
opt_x_ref = opti.parameter(N+1, 6)
# initial condition
opti.subject_to(opt_states[0, :] == opt_x_ref[0, :])
for i in range(N):
x_next = opt_states[i, :] + f(opt_states[i, :], opt_controls[i, :]).T*T
opti.subject_to(opt_states[i+1, :] == x_next)
# weight matrix
Q = np.diag([30.0, 30.0, 10.0, 10.0, 10.0, 1.0])
R = np.diag([1.0, 1.0, 1.0])
# cost function
obj = 0
for i in range(N):
state_error_ = opt_states[i, :] - opt_x_ref[i+1, :]
control_error_ = opt_controls[i, :] - opt_u_ref[i, :]
obj = obj + ca.mtimes([state_error_, Q, state_error_.T]) \
+ ca.mtimes([control_error_, R, control_error_.T])
opti.minimize(obj)
# Lyapunov NMPC - SMC constraints
lamda = np.diag([2,2,2])
H = ca.vertcat(ca.horzcat(ca.cos(opt_states[0,2]), -ca.sin(opt_states[0,2]), 0),
ca.horzcat(ca.sin(opt_states[0,2]), ca.cos(opt_states[0,2]), 0),
ca.horzcat(0, 0, 1),)
H_inv = ca.transpose(H)
H_dot = ca.vertcat(ca.horzcat(-ca.sin(opt_states[0,2]), -ca.cos(opt_states[0,2]), 0),
ca.horzcat(ca.cos(opt_states[0,2]), -ca.sin(opt_states[0,2]), 0),
ca.horzcat(0, 0, 1),)
M_mat = np.diag([1/M,1/M,1/J])
B_mat = np.diag([Bx, By, Bw])
C_mat = np.diag([Cx, Cy, Cw])
G_mat = ca.DM([ [0, np.sqrt(3)/2, -np.sqrt(3)/2],
[-1, 1/2, 1/2],
[d, d, d]])
z1 = ca.transpose(state_error_[0,:3]); z2 = ca.transpose(state_error_[0,3:])
S = H@z2 + lamda@z1
c2 = 2; c3 = 2
Ve = ca.transpose(S)@(c3@S) + ca.transpose(S)@H@(M_mat@(G_mat@ca.transpose(opt_controls[0,:])-B_mat@ca.transpose(opt_states[0,3:])) + (lamda + H_inv@H_dot)@z2)
#### boundrary and control conditions
# boundary and control conditions
opti.subject_to(opti.bounded(-math.inf, x, math.inf))
opti.subject_to(opti.bounded(-math.inf, y, math.inf))
opti.subject_to(opti.bounded(-math.inf, theta, math.inf))
opti.subject_to(opti.bounded(-v_max, vx, v_max))
opti.subject_to(opti.bounded(-v_max, vy, v_max))
opti.subject_to(opti.bounded(-omega_max, omega, omega_max))
opti.subject_to(opti.bounded(-u_max, u1, u_max))
opti.subject_to(opti.bounded(-u_max, u2, u_max))
opti.subject_to(opti.bounded(-u_max, u3, u_max))
opti.subject_to(opti.bounded(-math.inf, Ve, 0))
opts_setting = {'ipopt.max_iter':2000,
'ipopt.print_level':0,
'print_time':0,
'ipopt.acceptable_tol':1e-8,
'ipopt.acceptable_obj_change_tol':1e-6}
opti.solver('ipopt', opts_setting)
t0 = 0
init_state = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
current_state = init_state.copy()
u0 = np.zeros((N, 3))
next_trajectories = np.tile(init_state, N+1).reshape(N+1, -1) # set the initial state as the first trajectories for the robot
next_controls = np.zeros((N, 3))
next_states = np.zeros((N+1, 6))
x_c = [] # contains for the history of the state
u_c = []
t_c = [t0] # for the time
xx = [current_state]
sim_time = 12.0
## start MPC
mpciter = 0
start_time = time.time()
index_t = []
while(mpciter-sim_time/T<0.0):
## set parameter, here only update initial state of x (x0)
opti.set_value(opt_x_ref, next_trajectories)
opti.set_value(opt_u_ref, next_controls)
## provide the initial guess of the optimization targets
opti.set_initial(opt_controls, u0.reshape(N, 3))# (N, 3)
opti.set_initial(opt_states, next_states) # (N+1, 6)
## solve the problem once again
t_ = time.time()
sol = opti.solve()
index_t.append(time.time()- t_)
## obtain the control input
u_res = sol.value(opt_controls)
x_m = sol.value(opt_states)
# print(x_m[:3])
u_c.append(u_res[0, :])
t_c.append(t0)
x_c.append(x_m)
t0, current_state, u0, next_states = shift(T, t0, current_state, u_res, x_m, f_np)
xx.append(np.array(current_state))
## estimate the new desired trajectories and controls
next_trajectories, next_controls = desired_command_and_trajectory(t0, T, current_state, N)
mpciter = mpciter + 1
## after loop
print(mpciter)
t_v = np.array(index_t)
print(t_v.mean())
print((time.time() - start_time)/(mpciter))
## draw function
draw_result = Draw_MPC_tracking(rob_diam=0.3,
init_state=init_state,
robot_states=np.array(xx))
# with open('lnmpc.npy', 'wb') as f:
# np.save(f, xx)
import scipy.io
scipy.io.savemat('lnmpc_noise.mat', dict(xx=xx))