-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRawBoost.py
168 lines (126 loc) · 6.19 KB
/
RawBoost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy import signal
import copy
"""
___author__ = "Massimiliano Todisco, Hemlata Tak"
__email__ = "{todisco,tak}@eurecom.fr"
"""
'''
Hemlata Tak, Madhu Kamble, Jose Patino, Massimiliano Todisco, Nicholas Evans.
RawBoost: A Raw Data Boosting and Augmentation Method applied to Automatic Speaker Verification Anti-Spoofing.
In Proc. ICASSP 2022, pp:6382--6386.
'''
def randRange(x1, x2, integer):
y = np.random.uniform(low=x1, high=x2, size=(1,))
if integer:
y = int(y)
return y
def normWav(x,always):
if always:
x = x/np.amax(abs(x))
elif np.amax(abs(x)) > 1:
x = x/np.amax(abs(x))
return x
def genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs):
b = 1
for i in range(0, nBands):
fc = randRange(minF,maxF,0);
bw = randRange(minBW,maxBW,0);
c = randRange(minCoeff,maxCoeff,1);
if c/2 == int(c/2):
c = c + 1
f1 = fc - bw/2
f2 = fc + bw/2
if f1 <= 0:
f1 = 1/1000
if f2 >= fs/2:
f2 = fs/2-1/1000
b = np.convolve(signal.firwin(c, [float(f1), float(f2)], window='hamming', fs=fs),b)
G = randRange(minG,maxG,0);
_, h = signal.freqz(b, 1, fs=fs)
b = pow(10, G/20)*b/np.amax(abs(h))
return b
def filterFIR(x,b):
N = b.shape[0] + 1
xpad = np.pad(x, (0, N), 'constant')
y = signal.lfilter(b, 1, xpad)
y = y[int(N/2):int(y.shape[0]-N/2)]
return y
# Linear and non-linear convolutive noise
def LnL_convolutive_noise(x,N_f,nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,minBiasLinNonLin,maxBiasLinNonLin,fs):
y = [0] * x.shape[0]
for i in range(0, N_f):
if i == 1:
minG = minG-minBiasLinNonLin;
maxG = maxG-maxBiasLinNonLin;
b = genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs)
y = y + filterFIR(np.power(x, (i+1)), b)
y = y - np.mean(y)
y = normWav(y,0)
return y
# Impulsive signal dependent noise
def ISD_additive_noise(x, P, g_sd):
beta = randRange(0, P, 0)
y = copy.deepcopy(x)
x_len = x.shape[0]
n = int(x_len*(beta/100))
p = np.random.permutation(x_len)[:n]
f_r= np.multiply(((2*np.random.rand(p.shape[0]))-1),((2*np.random.rand(p.shape[0]))-1))
r = g_sd * x[p] * f_r
y[p] = x[p] + r
y = normWav(y,0)
return y
# Stationary signal independent noise
def SSI_additive_noise(x,SNRmin,SNRmax,nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs):
noise = np.random.normal(0, 1, x.shape[0])
b = genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs)
noise = filterFIR(noise, b)
noise = normWav(noise,1)
SNR = randRange(SNRmin, SNRmax, 0)
noise = noise / np.linalg.norm(noise,2) * np.linalg.norm(x,2) / 10.0**(0.05 * SNR)
x = x + noise
return x
def process_Rawboost_feature(feature, sr,args,algo):
# Data process by Convolutive noise (1st algo)
if algo==1:
feature =LnL_convolutive_noise(feature,args.N_f,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,args.minCoeff,args.maxCoeff,args.minG,args.maxG,args.minBiasLinNonLin,args.maxBiasLinNonLin,sr)
# Data process by Impulsive noise (2nd algo)
elif algo==2:
feature=ISD_additive_noise(feature, args.P, args.g_sd)
# Data process by coloured additive noise (3rd algo)
elif algo==3:
feature=SSI_additive_noise(feature,args.SNRmin,args.SNRmax,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,args.minCoeff,args.maxCoeff,args.minG,args.maxG,sr)
# Data process by all 3 algo. together in series (1+2+3)
elif algo==4:
feature =LnL_convolutive_noise(feature,args.N_f,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,
args.minCoeff,args.maxCoeff,args.minG,args.maxG,args.minBiasLinNonLin,args.maxBiasLinNonLin,sr)
feature=ISD_additive_noise(feature, args.P, args.g_sd)
feature=SSI_additive_noise(feature,args.SNRmin,args.SNRmax,args.nBands,args.minF,
args.maxF,args.minBW,args.maxBW,args.minCoeff,args.maxCoeff,args.minG,args.maxG,sr)
# Data process by 1st two algo. together in series (1+2)
elif algo==5:
feature =LnL_convolutive_noise(feature,args.N_f,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,
args.minCoeff,args.maxCoeff,args.minG,args.maxG,args.minBiasLinNonLin,args.maxBiasLinNonLin,sr)
feature=ISD_additive_noise(feature, args.P, args.g_sd)
# Data process by 1st and 3rd algo. together in series (1+3)
elif algo==6:
feature =LnL_convolutive_noise(feature,args.N_f,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,
args.minCoeff,args.maxCoeff,args.minG,args.maxG,args.minBiasLinNonLin,args.maxBiasLinNonLin,sr)
feature=SSI_additive_noise(feature,args.SNRmin,args.SNRmax,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,args.minCoeff,args.maxCoeff,args.minG,args.maxG,sr)
# Data process by 2nd and 3rd algo. together in series (2+3)
elif algo==7:
feature=ISD_additive_noise(feature, args.P, args.g_sd)
feature=SSI_additive_noise(feature,args.SNRmin,args.SNRmax,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,args.minCoeff,args.maxCoeff,args.minG,args.maxG,sr)
# Data process by 1st two algo. together in Parallel (1||2)
elif algo==8:
feature1 =LnL_convolutive_noise(feature,args.N_f,args.nBands,args.minF,args.maxF,args.minBW,args.maxBW,
args.minCoeff,args.maxCoeff,args.minG,args.maxG,args.minBiasLinNonLin,args.maxBiasLinNonLin,sr)
feature2=ISD_additive_noise(feature, args.P, args.g_sd)
feature_para=feature1+feature2
feature=normWav(feature_para,0) #normalized resultant waveform
# original data without Rawboost processing
else:
feature=feature
return feature