-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdesc_server.py
128 lines (118 loc) · 4.61 KB
/
desc_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
import sys
import time
import numpy as np
import zmq
import cv2
# Hardnet-related
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
#
def decode_msg(message):
A = cv2.imdecode(np.frombuffer(message,dtype=np.uint8), 0)
return A
def describe_patches(model, image, DO_CUDA = True, DESCR_OUT_DIM = 128, BATCH_SIZE = 512):
h,w = image.shape
n_patches = int(h/w)
t = time.time()
patches = np.ndarray((n_patches, 1, 32, 32), dtype=np.float32)
for i in range(n_patches):
patches[i,0,:,:] = image[i*(w): (i+1)*(w), 0:w]
outs = []
n_batches = int(n_patches / BATCH_SIZE) + 1
t = time.time()
descriptors_for_net = np.zeros((len(patches), DESCR_OUT_DIM))
for i in range(0, len(patches), BATCH_SIZE):
data_a = patches[i: i + BATCH_SIZE, :, :, :].astype(np.float32)
data_a = torch.from_numpy(data_a)
if DO_CUDA:
data_a = data_a.cuda()
data_a = Variable(data_a)
with torch.no_grad():
out_a = model(data_a)
descriptors_for_net[i: i + BATCH_SIZE,:] = out_a.data.cpu().numpy().reshape(-1, DESCR_OUT_DIM)
assert n_patches == descriptors_for_net.shape[0]
et = time.time() - t
descriptors_for_net = np.clip(210*(descriptors_for_net + 0.45), 0 ,255).astype(np.uint8).astype(np.float32)
print('processing', et, et/float(n_patches), ' per patch')
return descriptors_for_net
class L2Norm(nn.Module):
def __init__(self):
super(L2Norm,self).__init__()
self.eps = 1e-10
def forward(self, x):
norm = torch.sqrt(torch.sum(x * x, dim = 1) + self.eps)
x= x / norm.unsqueeze(-1).expand_as(x)
return x
class HardNet(nn.Module):
"""HardNet model definition
"""
def __init__(self):
super(HardNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1, bias = False),
nn.BatchNorm2d(32, affine=False),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1, bias = False),
nn.BatchNorm2d(32, affine=False),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1, bias = False),
nn.BatchNorm2d(64, affine=False),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1, bias = False),
nn.BatchNorm2d(64, affine=False),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2,padding=1, bias = False),
nn.BatchNorm2d(128, affine=False),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1, bias = False),
nn.BatchNorm2d(128, affine=False),
nn.ReLU(),
nn.Dropout(0.3),
nn.Conv2d(128, 128, kernel_size=8, bias = False),
nn.BatchNorm2d(128, affine=False),
)
def input_norm(self,x):
flat = x.view(x.size(0), -1)
mp = torch.mean(flat, dim=1)
sp = torch.std(flat, dim=1) + 1e-7
return (x - mp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand_as(x)) / sp.detach().unsqueeze(-1).unsqueeze(-1).unsqueeze(1).expand_as(x)
def forward(self, input):
x_features = self.features(self.input_norm(input))
x = x_features.view(x_features.size(0), -1)
return L2Norm()(x)
parser = argparse.ArgumentParser(description='Local patch descriptor server')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA inference')
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--port', default='5555', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
if __name__ == '__main__':
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:" + args.port)
model_weights = 'HardNet++.pth'
DESCR_OUT_DIM = 128
model = HardNet()
checkpoint = torch.load(model_weights)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
if args.cuda:
model.cuda()
print('Extracting on GPU')
else:
print('Extracting on CPU')
model = model.cpu()
while True:
# Wait for next request from client
message = socket.recv()
img = decode_msg(message).astype(np.float32)
descr = describe_patches(model, img, args.cuda, DESCR_OUT_DIM).astype(np.float32)
buff = np.getbuffer(descr)
socket.send(buff)