From 1ded853816154259407daae152c6c13ad120ba59 Mon Sep 17 00:00:00 2001 From: Alexis Duburcq Date: Sun, 9 Jun 2024 18:26:03 +0200 Subject: [PATCH] [gym/common] Add angular momentum and support polygon stability reward. --- .../gym_jiminy/common/bases/interfaces.py | 2 +- .../common/compositions/__init__.py | 4 +- .../gym_jiminy/common/compositions/generic.py | 5 +- .../gym_jiminy/common/compositions/mixin.py | 4 +- .../common/gym_jiminy/common/envs/generic.py | 4 + .../gym_jiminy/common/quantities/__init__.py | 4 +- .../gym_jiminy/common/quantities/generic.py | 11 +- .../gym_jiminy/envs/gym_jiminy/envs/atlas.py | 13 +- .../toolbox/compositions/__init__.py | 8 + .../toolbox/compositions/locomotion.py | 102 ++++ .../gym_jiminy/toolbox/math/__init__.py | 6 +- .../toolbox/gym_jiminy/toolbox/math/qhull.py | 568 +++++++++++++----- .../toolbox/wrappers/frame_rate_limiter.py | 1 - python/gym_jiminy/toolbox/setup.py | 7 +- python/gym_jiminy/unit_py/test_rewards.py | 23 +- python/jiminy_py/unit_py/utilities.py | 2 +- 16 files changed, 601 insertions(+), 163 deletions(-) create mode 100644 python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/__init__.py create mode 100644 python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/locomotion.py diff --git a/python/gym_jiminy/common/gym_jiminy/common/bases/interfaces.py b/python/gym_jiminy/common/gym_jiminy/common/bases/interfaces.py index cd4fbd91c..37a678585 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/bases/interfaces.py +++ b/python/gym_jiminy/common/gym_jiminy/common/bases/interfaces.py @@ -340,11 +340,11 @@ def _controller_handle(self, self.__is_observation_refreshed = False @property + @abstractmethod def unwrapped(self) -> "BaseJiminyEnv": """The "underlying environment at the basis of the pipeline from which this environment is part of. """ - return self @property @abstractmethod diff --git a/python/gym_jiminy/common/gym_jiminy/common/compositions/__init__.py b/python/gym_jiminy/common/gym_jiminy/common/compositions/__init__.py index 9dfd9b037..17d2f3521 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/compositions/__init__.py +++ b/python/gym_jiminy/common/gym_jiminy/common/compositions/__init__.py @@ -1,6 +1,7 @@ # pylint: disable=missing-module-docstring -from .mixin import (radial_basis_function, +from .mixin import (CUTOFF_ESP, + radial_basis_function, AdditiveMixtureReward, MultiplicativeMixtureReward) from .generic import (BaseTrackingReward, @@ -14,6 +15,7 @@ MinimizeAngularMomentumReward) __all__ = [ + "CUTOFF_ESP", "radial_basis_function", "AdditiveMixtureReward", "MultiplicativeMixtureReward", diff --git a/python/gym_jiminy/common/gym_jiminy/common/compositions/generic.py b/python/gym_jiminy/common/gym_jiminy/common/compositions/generic.py index 5afcd804b..0de5a6b0d 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/compositions/generic.py +++ b/python/gym_jiminy/common/gym_jiminy/common/compositions/generic.py @@ -54,9 +54,10 @@ class BaseTrackingReward(BaseQuantityReward): otherwise an exception will be risen. See `DatasetTrajectoryQuantity` and `AbstractQuantity` documentations for details. - The error transform in a normalized reward to maximize by applying RBF + The error is transformed in a normalized reward to maximize by applying RBF kernel on the error. The reward will be 0.0 if the error cancels out - completely and less than 0.01 above the user-specified cutoff threshold. + completely and less than 'CUTOFF_ESP' above the user-specified cutoff + threshold. """ def __init__(self, env: InterfaceJiminyEnv, diff --git a/python/gym_jiminy/common/gym_jiminy/common/compositions/mixin.py b/python/gym_jiminy/common/gym_jiminy/common/compositions/mixin.py index e9689bb8a..ce0a90d19 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/compositions/mixin.py +++ b/python/gym_jiminy/common/gym_jiminy/common/compositions/mixin.py @@ -13,7 +13,7 @@ # Reward value at cutoff threshold -RBF_CUTOFF_ESP = 1.0e-2 +CUTOFF_ESP = 1.0e-2 ArrayOrScalar = Union[np.ndarray, float] @@ -51,7 +51,7 @@ def radial_basis_function(error: ArrayOrScalar, squared_dist_rel = np.dot(error_, error_) / math.pow(cutoff, 2) else: squared_dist_rel = math.pow(np.linalg.norm(error_, order) / cutoff, 2) - return math.pow(RBF_CUTOFF_ESP, squared_dist_rel) + return math.pow(CUTOFF_ESP, squared_dist_rel) class AdditiveMixtureReward(BaseMixtureReward): diff --git a/python/gym_jiminy/common/gym_jiminy/common/envs/generic.py b/python/gym_jiminy/common/gym_jiminy/common/envs/generic.py index a44d5aa3f..159ebca2b 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/envs/generic.py +++ b/python/gym_jiminy/common/gym_jiminy/common/envs/generic.py @@ -566,6 +566,10 @@ def step_dt(self) -> float: def is_training(self) -> bool: return self._is_training + @property + def unwrapped(self) -> "BaseJiminyEnv": + return self + def train(self) -> None: self._is_training = True diff --git a/python/gym_jiminy/common/gym_jiminy/common/quantities/__init__.py b/python/gym_jiminy/common/gym_jiminy/common/quantities/__init__.py index 0d75ab7a6..09be1f41b 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/quantities/__init__.py +++ b/python/gym_jiminy/common/gym_jiminy/common/quantities/__init__.py @@ -26,7 +26,8 @@ MultiFootRelativeXYZQuat, CenterOfMass, CapturePoint, - ZeroMomentPoint) + ZeroMomentPoint, + translate_position_odom) __all__ = [ @@ -57,4 +58,5 @@ 'CenterOfMass', 'CapturePoint', 'ZeroMomentPoint', + 'translate_position_odom' ] diff --git a/python/gym_jiminy/common/gym_jiminy/common/quantities/generic.py b/python/gym_jiminy/common/gym_jiminy/common/quantities/generic.py index 08eea09c2..73e94c2d9 100644 --- a/python/gym_jiminy/common/gym_jiminy/common/quantities/generic.py +++ b/python/gym_jiminy/common/gym_jiminy/common/quantities/generic.py @@ -230,6 +230,9 @@ def initialize(self) -> None: # Re-allocate memory as the number of frames is not known in advance. # Note that Fortran memory layout (column-major) is used for speed up # because it preserves contiguity when copying frame data. + # Anyway, C memory layout (row-major) does not make sense in this case + # since chunks of columns are systematically extracted, which means + # that the returned array would NEVER be contiguous. nframes = len(self.frame_names) self._rot_mat_batch = np.zeros((3, 3, nframes), order='F') @@ -387,9 +390,9 @@ def initialize(self) -> None: # Re-allocate memory as the number of frames is not known in advance nframes = len(self.frame_names) if self.type in (OrientationType.EULER, OrientationType.ANGLE_AXIS): - self._data_batch = np.zeros((3, nframes), order='C') + self._data_batch = np.zeros((3, nframes), order='F') elif self.type == OrientationType.QUATERNION: - self._data_batch = np.zeros((4, nframes), order='C') + self._data_batch = np.zeros((4, nframes), order='F') # Re-assign mapping from chunks of frame names to corresponding data if self.type is not OrientationType.MATRIX: @@ -640,7 +643,7 @@ def initialize(self) -> None: # Re-allocate memory as the number of frames is not known in advance nframes = len(self.frame_names) - self._pos_batch = np.zeros((3, nframes), order='C') + self._pos_batch = np.zeros((3, nframes), order='F') # Refresh proxies self._pos_views.clear() @@ -908,7 +911,7 @@ def __init__(self, auto_refresh=False) # Pre-allocate memory for storing the pose XYZQuat of all frames - self._xyzquats = np.zeros((7, len(frame_names)), order='C') + self._xyzquats = np.zeros((7, len(frame_names)), order='F') def refresh(self) -> np.ndarray: # Copy the position of all frames at once in contiguous buffer diff --git a/python/gym_jiminy/envs/gym_jiminy/envs/atlas.py b/python/gym_jiminy/envs/gym_jiminy/envs/atlas.py index f11ee2b82..a49c89a2a 100644 --- a/python/gym_jiminy/envs/gym_jiminy/envs/atlas.py +++ b/python/gym_jiminy/envs/gym_jiminy/envs/atlas.py @@ -18,7 +18,7 @@ PDAdapter, MahonyFilter) from gym_jiminy.common.utils import build_pipeline -from gym_jiminy.toolbox.math import ConvexHull +from gym_jiminy.toolbox.math import ConvexHull2D if sys.version_info < (3, 9): from importlib_resources import files @@ -100,18 +100,19 @@ def _cleanup_contact_points(env: WalkerJiminyEnv) -> None: contact_frame_indices = env.robot.contact_frame_indices contact_frame_names = env.robot.contact_frame_names - num_contacts = int(len(env.robot.contact_frame_indices) // 2) + num_contacts = len(env.robot.contact_frame_indices) // 2 for contact_slice in (slice(num_contacts), slice(num_contacts, None)): contact_positions = np.stack([ env.robot.pinocchio_data.oMf[frame_index].translation - for frame_index in contact_frame_indices[contact_slice]], axis=0) + for frame_index in contact_frame_indices[contact_slice] + ], axis=0) contact_bottom_index = np.argsort( - contact_positions[:, 2])[:int(num_contacts//2)] - convex_hull = ConvexHull(contact_positions[contact_bottom_index, :2]) + contact_positions[:, 2])[:(num_contacts // 2)] + convex_hull = ConvexHull2D(contact_positions[contact_bottom_index, :2]) env.robot.remove_contact_points([ contact_frame_names[contact_slice][i] for i in set(range(num_contacts)).difference( - contact_bottom_index[convex_hull._vertex_indices])]) + contact_bottom_index[convex_hull.indices])]) class AtlasJiminyEnv(WalkerJiminyEnv): diff --git a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/__init__.py b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/__init__.py new file mode 100644 index 000000000..9264558bd --- /dev/null +++ b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/__init__.py @@ -0,0 +1,8 @@ +# pylint: disable=missing-module-docstring + +from .locomotion import tanh_normalization, MaximizeStability + +__all__ = [ + "tanh_normalization", + "MaximizeStability" +] diff --git a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/locomotion.py b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/locomotion.py new file mode 100644 index 000000000..1d814f6cc --- /dev/null +++ b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/compositions/locomotion.py @@ -0,0 +1,102 @@ +"""Rewards mainly relevant for locomotion tasks on floating-base robots. +""" +import math +from functools import partial + +import numba as nb + +from gym_jiminy.common.compositions import CUTOFF_ESP +from gym_jiminy.common.bases import ( + InterfaceJiminyEnv, QuantityEvalMode, BaseQuantityReward) + +from ..quantities import StabilityMarginProjectedSupportPolygon + + +@nb.jit(nopython=True, cache=True) +def tanh_normalization(value: float, + cutoff_low: float, + cutoff_high: float) -> float: + """Normalize a given quantity between 0.0 and 1.0. + + The extremum 0.0 and 1.0 correspond to the upper and lower cutoff + respectively, if the lower cutoff is smaller than the upper cutoff. The + other way around otherwise. These extremum are reached asymptotically, + which is that the gradient is never zero but rather vanishes exponentially. + The gradient will be steeper if the cutoff range is tighter and the other + way around. + + :param value: Value of the scalar floating-point quantity. The quantity may + be bounded or unbounded, and signed or not, without + restrictions. + :param cutoff: Cut-off threshold to consider. + :param order: Order of Lp-Norm that will be used as distance metric. + """ + value_rel = ( + cutoff_high + cutoff_low - 2 * value) / (cutoff_high - cutoff_low) + return 1.0 / (1.0 + math.pow(CUTOFF_ESP / (1.0 - CUTOFF_ESP), value_rel)) + + +class MaximizeStability(BaseQuantityReward): + """Encourage the agent to maintain itself in postures as robust as possible + to external disturbances. + + The signed distance is transformed in a normalized reward to maximize by + applying rescaled tanh. The reward is smaller than CUTOFF_ESP if the ZMP is + outside the projected support polygon and further away from the border than + the upper cutoff. Conversely, the reward is larger than 1.0 - CUTOFF_ESP if + the ZMP is inside the projected support polygon and further away from the + border than the lower cutoff. + + The agent may opt from one of the two very different strategies to maximize + this reward: + * Foot placement: reshaping the projected support polygon by moving the + feet (aka the candidate contact points in the direction of the ZMP + without actually moving the ZMP itself. + * Torso/Ankle control: Modulating the linear and angular momentum of its + upper-body to move the ZMP closer to the Chebyshev center of the + projected support polygon while holding the feet at the exact same + location. + + These two strategies are complementary rather than mutually exclusive. + Usually, ankle control is preferred for small disturbances. Foot placement + comes to place when ankle control is no longer sufficient to keep balance. + Indeed, the first strategy is only capable of recovering 0-step capturable + disturbances, while the second one is only limited to inf-step capturable + disturbances, which includes and dramatically extends 0-step capturability. + """ + def __init__(self, + env: InterfaceJiminyEnv, + cutoff_inner: float, + cutoff_outer: float) -> None: + """ + :param env: Base or wrapped jiminy environment. + :param cutoff_inner: Cutoff threshold when the ZMP lies inside the + support polygon. The reward will be larger than + '1.0 - CUTOFF_ESP' if the distance from the border + is larger than 'cutoff_inner'. + :param cutoff_outer: Cutoff threshold when the ZMP lies outside the + support polygon. The reward will be smaller than + 'CUTOFF_ESP' if the ZMP is further away from the + border of the support polygon than 'cutoff_outer'. + """ + # Backup some user argument(s) + self.cutoff_inner = cutoff_inner + self.cutoff_outer = cutoff_outer + + # The cutoff thresholds must be positive + if self.cutoff_inner < 0.0 or self.cutoff_outer < 0.0: + raise ValueError( + "The inner and outer cutoff must both be positive.") + + # Call base implementation + super().__init__( + env, + "reward_momentum", + (StabilityMarginProjectedSupportPolygon, dict( + mode=QuantityEvalMode.TRUE + )), + partial(tanh_normalization, + cutoff_low=self.cutoff_inner, + cutoff_high=-self.cutoff_outer), + is_normalized=True, + is_terminal=False) diff --git a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/__init__.py b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/__init__.py index 4f8da3806..8f11c59c8 100644 --- a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/__init__.py +++ b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/__init__.py @@ -1,10 +1,10 @@ # pylint: disable=missing-module-docstring -from .qhull import ConvexHull, compute_distance_convex_to_point +from .qhull import ConvexHull2D, compute_convex_chebyshev_center __all__ = [ - "ConvexHull", - "compute_distance_convex_to_point" + "ConvexHull2D", + "compute_convex_chebyshev_center" ] try: diff --git a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/qhull.py b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/qhull.py index 45944151b..12e5cf8ad 100644 --- a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/qhull.py +++ b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/math/qhull.py @@ -1,16 +1,32 @@ -""" TODO: Write documentation. +"""This module proposes a basic yet reasonably efficient representation of the +convex hull of a set of points in 2D Euclidean space. + +This comes with helper methods to compute various types of distances, including +for degenerated cases. """ -from typing import Optional +import math +from functools import cached_property +from typing import Tuple import numpy as np import numba as nb from numba.np.extensions import cross2d -from scipy.spatial import _qhull + +from scipy.optimize import linprog + +try: + from matplotlib.pyplot import Figure +except ImportError: + Figure = type(None) # type: ignore[misc,assignment] + +from jiminy_py.viewer import interactive_mode @nb.jit(nopython=True, cache=True, inline='always') def _amin_last_axis(array: np.ndarray) -> np.ndarray: - """ TODO: Write documentation. + """Compute the minimum of a 2-dimensional array along the second axis. + + :param array: Input array. """ res = np.empty(array.shape[0]) for i in range(array.shape[0]): @@ -20,7 +36,10 @@ def _amin_last_axis(array: np.ndarray) -> np.ndarray: @nb.jit(nopython=True, cache=True, inline='always') def _all_last_axis(array: np.ndarray) -> np.ndarray: - """ TODO: Write documentation. + """Test whether all array elements along the second axis of a 2-dimensional + array evaluate to True. + + :param array: Input array. """ res = np.empty(array.shape[0], dtype=np.bool_) for i in range(array.shape[0]): @@ -28,184 +47,461 @@ def _all_last_axis(array: np.ndarray) -> np.ndarray: return res -@nb.jit(nopython=True, cache=True) -def compute_distance_convex_to_point(points: np.ndarray, - vertex_indices: np.ndarray, - queries: np.ndarray) -> np.ndarray: - """ TODO: Write documentation. +@nb.jit(nopython=True, cache=True, fastmath=True) +def compute_convex_hull_vertices(points: np.ndarray) -> np.ndarray: + """Determine the vertices of the convex hull defined by a set of points in + 2D Euclidean space. + + As a reminder, the convex hull of a set of points is defined as the + smallest convex polygon that can enclose all the points. + + .. seealso:: + Internally, it leverages using Andrew's monotone chain algorithm, which + as almost optimal complexity O(n*log(n)) but is only applicable in 2D + space. For an overview of all the existing algorithms to this day, see: + https://en.wikipedia.org/wiki/Convex_hull_algorithms + + :param points: Set of 2D points from which to compute the convex hull, + as a 2D array whose first dimension corresponds to the + number of points, and the second gathers the 2 position + coordinates (X, Y). """ - # Compute the equations of the edges - points_1 = points[np.roll(vertex_indices, 1)].T - points_0 = points[vertex_indices].T - vectors = points_1 - points_0 - normals = np.stack((-vectors[1], vectors[0]), 0) - normals /= np.sqrt(np.sum(np.square(normals), 0)) - offsets = - np.sum(normals * points_0, 0) - equations = np.concatenate((normals, np.expand_dims(offsets, 0))) + # Sorting points lexicographically (by x and then by y). + indices = np.argsort(points[:, 0], kind='mergesort') + indices = indices[np.argsort(points[indices, 1], kind='mergesort')] + + # If there is less than 3 points, the hull comprises all the points + npoints = len(points) + if npoints <= 3: + return indices + + # Combining the lower and upper hulls to get the full convex hull. + # The first point of each hull is omitted because it is the same as the + # last point of the other hull. + vertex_indices = [] + + # Build the upper hull. + # The upper hull is similar to the lower hull but runs along the top of the + # set of points. It is constructed by starting with the right-most point + # and moving left. + upper = [] + for i in indices[::-1]: + point = points[i] + while len(upper) > 1: + # Check if the point is inside or outside of the hull at the time + # being by checking the sign of the 2D cross product. + if (upper[-1][0] - upper[-2][0]) * (point[1] - upper[-2][1]) > ( + point[0] - upper[-2][0]) * (upper[-1][1] - upper[-2][1]): + break + upper.pop() + vertex_indices.pop() + if upper: + vertex_indices.append(i) + upper.append(point) + + # Build the lower hull. + # The lower hull is the part of the convex hull that runs along the bottom + # of the set of points when they are sorted by their x-coordinates (from + # left to right). It is constructed by starting with the left-most point, + # points are added to the lower hull. If adding a new point creates a + # "right turn" (or non-left turn) with the last two points in the lower + # hull, the second-to-last point is removed. + lower = [] + for i in indices: + point = points[i] + while len(lower) > 1: + if (lower[-1][0] - lower[-2][0]) * (point[1] - lower[-2][1]) > ( + lower[-1][1] - lower[-2][1]) * (point[0] - lower[-2][0]): + break + lower.pop() + vertex_indices.pop() + if lower: + vertex_indices.append(i) + lower.append(point) + + return np.array(vertex_indices) + + +@nb.jit(nopython=True, cache=True, inline='always') +def compute_vectors_from_convex(vertices: np.ndarray) -> np.ndarray: + """Compute the un-normalized oriented direction vector of the edges. + + A point is inside the convex hull if it lies on the left side of all the + edges. + + :param vertices: Vertices of the convex hull with counter-clockwise + ordering, as a 2D array whose first dimension corresponds + to individual vertices while the second dimensions gathers + the 2 position coordinates (X, Y). + :returns: Direction of all the edges with the same ordering of the provided + vertices, as a 2D array whose first dimension corresponds to individual + edges while the second gathers the 2 components of the direction. + """ + vectors = np.empty((2, len(vertices))).T + vectors[0] = vertices[-1] - vertices[0] + vectors[1:] = vertices[:-1] - vertices[1:] + return vectors + + +@nb.jit(nopython=True, cache=True, inline='always') +def compute_equations_from_convex(vertices: np.ndarray, + vectors: np.ndarray) -> np.ndarray: + """Compute the (normalized) equations of the edges for a convex hull in 2D + Euclidean space. + + The equation of a edge is fully specified by its normal vector 'a' and a + scalar floating-point offset 'c'. A given point 'x' is on the line + defined by the edge of `np.dot(a, x) + d = 0.0`, inside if negative, + outside otherwise. + + :param vertices: Vertices of the convex hull with counter-clockwise + ordering, as a 2D array whose first dimension corresponds + to individual vertices while the second dimensions gathers + the 2 position coordinates (X, Y). + :param vectors: Direction of all the edges with the same ordering of the + provided vertices, as a 2D array whose first dimension + corresponds to individual edges while the second gathers + the 2 components of the direction. + + :returns: Equations of all the edges with the same ordering of the provided + vertices, as a 2D array whose first dimension corresponds to individual + edges while the second gathers the 2 components of the normal (ax, ay) plus + the offset d. The normal vector is normalized. + """ + equations = np.empty((3, len(vertices))) + normals, offsets = equations[:2], equations[-1] + normals[0] = - vectors[:, 1] + normals[1] = + vectors[:, 0] + normals /= np.sqrt(np.sum(np.square(normals), axis=0)) + offsets[:] = - np.sum(normals * vertices.T, axis=0) + return equations.T + + +@nb.jit(nopython=True, cache=True, inline='always') +def compute_distance_convex_to_point(vertices: np.ndarray, + vectors: np.ndarray, + queries: np.ndarray) -> np.ndarray: + """Compute the signed distance of query points from a convex hull in 2D + Euclidean space. + + Positive distance corresponds to a query point lying outside the convex + hull. + + .. warning: + The convex hull must be non-degenerated, ie having at least 3 points. + + :param vertices: Vertices of the convex hull with counter-clockwise + ordering, as a 2D array whose first dimension corresponds + to individual vertices while the second dimensions gathers + the 2 position coordinates (X, Y). + :param vectors: Direction of all the edges with the same ordering of the + provided vertices, as a 2D array whose first dimension + corresponds to individual edges while the second gathers + the 2 components of the direction. + :param queries: Set of 2D points for which to compute the distance from the + convex hull, as a 2D array whose first dimension + corresponds to the individual query points while the second + dimensions gathers the 2 position coordinates (X, Y). + """ # Determine for each query point if it lies inside or outside - queries = np.ascontiguousarray(queries) + queries_rel = np.expand_dims(queries, -1) - vertices.T sign_dist = 1.0 - 2.0 * _all_last_axis( - queries @ equations[:-1] + equations[-1] < 0.0) + queries_rel[:, 0] * vectors[:, 1] > queries_rel[:, 1] * vectors[:, 0]) # Compute the distance from the convex hull, as the min distance # from every segment of the convex hull. - ratios = np.sum( - (np.expand_dims(queries, -1) - points_0) * vectors, axis=1 - ) / np.sum(np.square(vectors), 0) - ratios = np.clip(ratios, 0.0, 1.0) - projs = np.expand_dims(ratios, 1) * vectors + points_0 + ratios = np.expand_dims(np.sum( + queries_rel * vectors.T, axis=1 + ), 1) / np.sum(np.square(vectors), axis=1) + ratios = np.minimum(np.maximum(ratios, 0.0), 1.0) + projs = ratios * vectors.T + vertices.T dist = np.sqrt(_amin_last_axis(np.sum(np.square( - np.expand_dims(queries, -1) - projs), 1))) - - # Compute the resulting signed distance (negative if inside) - signed_dist = sign_dist * dist + np.expand_dims(queries, -1) - projs), axis=1))) - return signed_dist + # Resulting the signed distance (negative if inside) + return sign_dist * dist -@nb.jit(nopython=True, cache=True) +@nb.jit(nopython=True, cache=True, inline='always') def compute_distance_convex_to_ray( - points: np.ndarray, - vertex_indices: np.ndarray, - query_vector: np.ndarray, + vertices: np.ndarray, + vectors: np.ndarray, + query_dir: np.ndarray, query_origin: np.ndarray) -> float: - """ TODO: Write documentation. + """Compute ray-casting signed distance (aka. time-of-flight) from a convex + hull to a oriented ray originating at a given position and pointing in a + specific direction, in 2D Euclidean space. + + The distance is negative if the origin of the ray lies inside the convex + hull. The distance is 'inf' is there is no intersection between the + oriented ray and the convex hull. It never happens if the origin lays + inside the convex hull, which means that the distance is negative, but + there is no guarantee otherwise. + + .. warning: + The convex hull must be non-degenerated, ie having at least 3 points. + + :param vertices: Vertices of the convex hull with counter-clockwise + ordering, as a 2D array whose first dimension corresponds + to individual vertices while the second dimensions gathers + the 2 position coordinates (X, Y). + :param vectors: Direction of all the edges with the same ordering of the + provided vertices, as a 2D array whose first dimension + corresponds to individual edges while the second gathers + the 2 components of the direction. + :param query_dir: Direction in which the ray is casting, as a 1D array. + It does not have to be normalized. + :param query_origin: Position from which the ray is casting, as a 1D array. """ - # Compute the direction vectors of the edges - points_1 = points[np.roll(vertex_indices, 1)] - points_0 = points[vertex_indices] - vectors = points_1 - points_0 - - # Compute the distance from the convex hull, as the only edge intersecting - # with the oriented line. - ratios = cross2d(query_origin - points_0, query_vector) / \ - cross2d(vectors, query_vector) - - if np.sum(np.logical_and(0.0 <= ratios, ratios < 1.0)) != 2: - raise ValueError("Query point origin not lying inside convex hull.") - + # Compute the distance from the convex hull. + # The distance only edge intersecting with the oriented line. + # The follow ratio corresponds to the relative position of the intersection + # point from each edge, 0.0 and 1.0 correspond to start vertex 'point_0' + # and end vertex 'point_1' respectively. This ratio is unbounded. Values + # outside range [0.0, 1.0] means that there is no intersection with the + # corresponding edge. + ratios = (cross2d(query_origin - vertices, query_dir) / + cross2d(vectors, query_dir)) + + # Compute the minimum casting distance and count how many edges are crossed + collide_num = 0 + casting_dist = math.inf for j, ratio in enumerate(ratios): if 0.0 <= ratio < 1.0: - proj = ratio * vectors[j] + points_0[j] - query_origin - if proj.dot(query_vector) > 0.0: - return np.linalg.norm(proj) # type: ignore[return-value] - - return 0.0 # This case cannot happens because for the explicit check + collision = ratio * vectors[j] + vertices[j] + oriented_ray = collision - query_origin + if oriented_ray.dot(query_dir) > 0.0: + casting_dist = min(np.linalg.norm(oriented_ray), casting_dist) + collide_num += 1 + + # If the ray is intersecting with two edges and the sign of the oriented + # casting ray from origin to collision point is positive for only one of + # them, then the origin is laying inside the convex hull, which means that + # the sign of the distance should be negative. On the contrary, if both + # are positive, then it is outside and the distance is the minimum between + # them. In all other cases, the distance is undefine, returning 'inf'. + if collide_num == 1: + casting_dist *= -1 + return casting_dist -class ConvexHull: - """ TODO: Write documentation. +@nb.jit(nopython=True, cache=True, inline='always') +def compute_distance_convex_to_convex(vertices_1: np.ndarray, + vectors_1: np.ndarray, + vertices_2: np.ndarray, + vectors_2: np.ndarray) -> float: + """Compute the distance between two convex hulls in 2D Euclidean space. + + .. warning: + Both convex hull must be non-degenerated, ie having at least 3 points + each. + + :param vertices_1: Vertices of the first convex hull with counter-clockwise + ordering, as a 2D array whose first dimension + corresponds to individual vertices while the second + dimensions gathers the 2 position coordinates (X, Y). + :param vectors_1: Direction of all the edges of the first convex hull with + the same ordering of the provided vertices, as a 2D array + whose first dimension corresponds to individual edges and + the second gathers the 2 components of the direction. + :param vertices_2: Vertices of the second convex hull with counter- + clockwise ordering, as a 2D array. See `vertices_1` for + details. + :param vectors_2: Direction of all the edges of the second convex hull with + the same ordering of the provided vertices, as a 2D + array. See `vertices_2` for details. + """ + distance_1 = np.min( + compute_distance_convex_to_point(vertices_1, vectors_1, vertices_2)) + distance_2 = np.min( + compute_distance_convex_to_point(vertices_2, vectors_2, vertices_1)) + return min(distance_1, distance_2) + + +def compute_convex_chebyshev_center( + equations: np.ndarray) -> Tuple[np.ndarray, float]: + r"""Compute the Chebyshev center of a convex polyhedron in N-dimensional + Euclidean space. + + The Chebyshev center is the point that is furthest inside a convex + polyhedron. Alternatively, it is the center of the largest hypersphere of + inscribed in the polyhedron. This can easily be computed using linear + programming. Considering halfspaces of the form :math:`Ax + b \leq 0`, + solving the linear program: + + .. math:: + max \: y + s.t. Ax + y ||A_i|| \leq -b + + With :math:`A_i` being the rows of A, i.e. the normals to each plane. The + equations outputted by Qhull are always normalized. For reference, see: + https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.html + + .. warning: + The convex hull must be non-degenerated, ie having at least 3 points. + + :param equations: Equations of the edges as a 2D array whose first dimension + corresponds to individual edges while the second gathers + the 2 components of the normal plus the offset. + + :return: Pair (center, radius) where 'center' is a 1D array, and 'radius' + is a positive scalar floating point value. + """ # noqa: E501 # pylint: disable=line-too-long + # Compute the centroid of the polyhedron as the initial guess + num_dims = equations.shape[1] + A = np.concatenate(( + equations[:, :-1], np.ones((len(equations), 1))), axis=1) + b = - equations[:, -1:] + c = np.array([*(0.0,) * (num_dims - 1), -1.0]) + res = linprog(c, A_ub=A, b_ub=b, bounds=(None, None)) + return res.x[:-1], res.x[-1] + + +class ConvexHull2D: + """Class representing the convex hulls of a set of points in 2D Euclidean + space. """ + def __init__(self, points: np.ndarray) -> None: - """Compute the convex hull defined by a set of points. + """Compute the convex hull defined by a set of points in 2D Euclidean + space. - :param points: N-D points whose to computed the associated convex hull, + :param points: Set of 2D points from which to compute the convex hull, as a 2D array whose first dimension corresponds to the - number of points, and the second to the N-D coordinates. + number of points, and the second gathers the 2 position + coordinates (X, Y). """ assert len(points) > 0, "The length of 'points' must be at least 1." # Backup user argument(s) - self._points = np.ascontiguousarray(points) - - # Create convex full if possible - if len(self._points) > 2: - try: - self._hull = _qhull._Qhull(points=self._points, - options=b"", - mode_option=b"i", - required_options=b"Qt", - furthest_site=False, - incremental=False, - interior_point=None) - except _qhull.QhullError as e: - raise ValueError( - f"Impossible to compute convex hull ({self._points})." - ) from e - self._vertex_indices = self._hull.get_extremes_2d() - else: - self._hull = None - - # Buffer to cache center computation - self._center: Optional[np.ndarray] = None - - @property - def center(self) -> np.ndarray: - """Get the center of the convex hull. + self.points = points + self.npoints = len(self.points) - .. note:: - Degenerated convex hulls corresponding to len(points) == 1 or 2 are - handled separately. + # Compute the vertices of the convex hull + self.indices = compute_convex_hull_vertices(self.points) - :returns: 1D float vector with N-D coordinates of the center. + # Extract vertices of the convex hull with counter-clockwise ordering + self.vertices = self.points[self.indices] + + @cached_property + def vectors(self) -> np.ndarray: + """Un-normalized oriented direction vector of the edges. """ - if self._center is None: - if len(self._points) > 3: - vertices = self._points[self._vertex_indices] - else: - vertices = self._points - self._center = np.mean(vertices, axis=0) - return self._center + return compute_vectors_from_convex(self.vertices) - def get_distance_to_point(self, queries: np.ndarray) -> np.ndarray: - """Compute the signed distance of query points from the convex hull. + @cached_property + def equations(self) -> np.ndarray: + """Normalized equations of the edges. + """ + return compute_equations_from_convex(-self.vertices, self.vectors) - Positive distance corresponds to a query point lying outside the convex - hull. + @cached_property + def center(self) -> np.ndarray: + """Barycenter. .. note:: - Degenerated convex hulls corresponding to len(points) == 1 or 2 are - handled separately. The distance from a point and a segment is used - respectively. + The barycenter must be distinguished from the Chebyshev center, + which is defined as the center of the largest circle inscribed in + the polyhedron. Computing the latter involves solving a Linear + Program, which is known to have a unique solution that can always + be found in finite time. However, it is several order of magnitude + to compute than the barycenter. For details about the Chebyshev + center, see `compute_convex_chebyshev_center`. + """ + return np.mean(self.vertices, axis=0) - .. warning:: - This method only supports 2D space for the non-degenerated case. + def get_distance_to_point(self, points: np.ndarray) -> np.ndarray: + """Compute the signed distance of a single or a batch of query points + from the convex hull. - :param queries: N-D query points for which to compute distance from the - convex hull, as a 2D array. + Positive distance corresponds to a query point lying outside the convex + hull. - :returns: 1D float vector of the same length than `queries`. + .. note:: + Degenerated convex hulls are handled separately. The distance from + a point and a segment is used respectively. + + :param points: Set of 2D points for which to compute the distance from + the convex hull, as a 2D array whose first dimension + corresponds to the individual query points while the + second dimensions gathers the 2 position coordinates. + Note that the first dimension can be omitted if there is + a single query point. """ - if len(self._points) > 2: - # Compute the signed distance between query points and convex hull - if self._points.shape[1] != 2: - raise NotImplementedError + # Make sure that the input is at least 2D + if points.ndim < 2: + points = np.atleast_2d(points) + + # Compute the signed distance between query points and convex hull + if self.npoints > 2: return compute_distance_convex_to_point( - self._points, self._vertex_indices, queries) + self.vertices, self.vectors, points) - if len(self._points) == 2: - # Compute the distance between query points and segment - vec = self._points[1] - self._points[0] - ratio = (queries - self._points[0]) @ vec / np.dot(vec, vec) - proj = self._points[0] + np.outer(np.clip(ratio, 0.0, 1.0), vec) - return np.linalg.norm(queries - proj, 2, axis=1) + # Compute the distance between query points and segment + if self.npoints == 2: + vec = self.vertices[1] - self.vertices[0] + ratio = (points - self.vertices[0]) @ vec / np.dot(vec, vec) + proj = self.vertices[0] + np.outer(np.clip(ratio, 0.0, 1.0), vec) + return np.linalg.norm(points - proj, axis=1) # Compute the distance between query points and point - return np.linalg.norm(queries - self._points, 2, axis=1) + return np.linalg.norm(points - self.vertices, axis=1) def get_distance_to_ray(self, - query_vector: np.ndarray, - query_origin: np.ndarray) -> np.ndarray: - """Compute the distance of single ray from the convex hull. - - .. warning:: - It is assumed that the query origins are lying inside the convex - hull. + vector: np.ndarray, + origin: np.ndarray) -> np.ndarray: + """Compute the signed distance of single oriented ray from this convex + hull. - .. warning:: - This method only supports 2D space. + The distance is negative if the origin of the ray lies inside the + convex hull. The distance is 'inf' is there is no intersection between + the oriented ray and the convex hull. .. warning:: - Degenerated convex hulls corresponding to len(points) == 1 or 2 are - not supported. + Degenerated convex hulls are not supported. - :param query_vector: Direction of the ray. - :param query_origin: Origin of the ray. + :param vector: Direction in which the ray is casting, as a 1D array. + This vector does not have to be normalized. + :param origin: Position from which the ray is casting, as a 1D array. """ - if len(self._points) < 3: - raise NotImplementedError - if self._points.shape[1] != 2: + if self.npoints < 3: raise NotImplementedError return compute_distance_convex_to_ray( - self._points, self._vertex_indices, query_vector, query_origin) + self.vertices, self.vectors, vector, origin) + + def get_distance_to_convex(self, other: "ConvexHull2D") -> float: + """Compute the distance between two convex hulls in 2D Euclidean space. + + :param other: Convex hull from which to compute the distance wrt the + one characterized by this instance. + """ + return compute_distance_convex_to_convex( + self.vertices, self.vectors, other.vertices, other.vectors) + + def plot(self) -> Figure: + """Display the original points along their convex hull. + """ + # Make sure matplotlib is available + try: + # pylint: disable=import-outside-toplevel + import matplotlib.pyplot as plt + except ImportError as e: + raise ImportError("Matplotlib library not available. Please " + "install it before calling this method.") from e + + # Create new figure and return it to the user + fig = plt.figure() + ax = fig.add_subplot(111) + ax.set_aspect('equal') + plt.plot(*self.points.T, 'o') + plt.plot(*np.stack(( + self.vertices.T, + np.roll(self.vertices, 1, axis=0).T), axis=-1), 'k-') + plt.show(block=False) + + # Show figure, without blocking for interactive python sessions only + if interactive_mode() < 2: + fig.show() + + return fig diff --git a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/wrappers/frame_rate_limiter.py b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/wrappers/frame_rate_limiter.py index 0567f49a8..4dfa81737 100644 --- a/python/gym_jiminy/toolbox/gym_jiminy/toolbox/wrappers/frame_rate_limiter.py +++ b/python/gym_jiminy/toolbox/gym_jiminy/toolbox/wrappers/frame_rate_limiter.py @@ -10,7 +10,6 @@ from jiminy_py.viewer import sleep from gym_jiminy.common.bases import ObsT, ActT, InfoType, InterfaceJiminyEnv -from gym_jiminy.common.envs import BaseJiminyEnv class FrameRateLimiter(gym.Wrapper, # [ObsT, ActT, ObsT, ActT], diff --git a/python/gym_jiminy/toolbox/setup.py b/python/gym_jiminy/toolbox/setup.py index db22695aa..8c44f04d1 100644 --- a/python/gym_jiminy/toolbox/setup.py +++ b/python/gym_jiminy/toolbox/setup.py @@ -32,12 +32,11 @@ package_data={"gym_jiminy.toolbox": ["py.typed"]}, install_requires=[ f"gym-jiminy~={gym_jiminy_version}", - # Used to compute convex hull. + # Used to compute 3D convex hulls (using custom implementation in 2D), + # and to solve the Linear Program for finding their Chebyshev center. # No wheel is distributed on pypi for PyPy, and pip requires to install # `libatlas-base-dev` system dependency to build it from source. - # 1.8.0: `scipy.spatial.qhull` low-level API changes. - # 1.9.2: First release to support Python 3.11 - "scipy>=1.9.2" + "scipy" ], zip_safe=False ) diff --git a/python/gym_jiminy/unit_py/test_rewards.py b/python/gym_jiminy/unit_py/test_rewards.py index 0931e6dfc..acaa43124 100644 --- a/python/gym_jiminy/unit_py/test_rewards.py +++ b/python/gym_jiminy/unit_py/test_rewards.py @@ -9,6 +9,7 @@ from jiminy_py.log import extract_trajectory_from_log from gym_jiminy.common.compositions import ( + CUTOFF_ESP, TrackingActuatedJointPositionsReward, TrackingBaseOdometryVelocityReward, TrackingBaseHeightReward, @@ -16,8 +17,10 @@ TrackingFootPositionsReward, TrackingFootOrientationsReward, SurviveReward, - MinimizeAngularMomentumReward, AdditiveMixtureReward) +from gym_jiminy.toolbox.compositions import ( + tanh_normalization, + MaximizeStability) class Rewards(unittest.TestCase): @@ -104,3 +107,21 @@ def test_mixture(self): assert reward_sum(terminated, {}) == ( 0.5 * reward_odometry(terminated, {}) + 0.2 * reward_survive(terminated, {})) + + def test_stability(self): + CUTOFF_INNER, CUTOFF_OUTER = 0.1, 0.5 + reward_stability = MaximizeStability( + self.env, cutoff_inner=0.1, cutoff_outer=0.5) + quantity = reward_stability.quantity + + self.env.reset(seed=0) + action = self.env.action_space.sample() + _, _, terminated, _, _ = self.env.step(action) + + dist = quantity.support_polygon.get_distance_to_point(quantity.zmp) + value = tanh_normalization(dist.item(), -CUTOFF_INNER, CUTOFF_OUTER) + np.testing.assert_allclose(tanh_normalization( + -CUTOFF_INNER, -CUTOFF_INNER, CUTOFF_OUTER), 1.0 - CUTOFF_ESP) + np.testing.assert_allclose(tanh_normalization( + CUTOFF_OUTER, -CUTOFF_INNER, CUTOFF_OUTER), CUTOFF_ESP) + np.testing.assert_allclose(reward_stability(terminated, {}), value) diff --git a/python/jiminy_py/unit_py/utilities.py b/python/jiminy_py/unit_py/utilities.py index 28dd8055b..6c7a182c8 100644 --- a/python/jiminy_py/unit_py/utilities.py +++ b/python/jiminy_py/unit_py/utilities.py @@ -167,7 +167,7 @@ def integrate_dynamics(time: np.ndarray, dynamics(t: float, x: np.ndarray) -> np:ndarray - :return: 2D array for which the i-th line is the solution x at `time[i]`. + :returns: 2D array for which the i-th line is the solution x at `time[i]`. """ solver = ode(dynamics) solver.set_initial_value(x0, t=time[0])