forked from facebookresearch/multipathnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTester_FRCNN.lua
192 lines (158 loc) · 6.05 KB
/
Tester_FRCNN.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
------------------------------------------------------------------------------]]
local utils = paths.dofile('utils.lua')
local tds = require 'tds'
local testCoco = require 'testCoco.init'
require 'sys'
local Tester = torch.class('fbcoco.Tester_FRCNN')
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
function Tester:__init(module, transformer, dataset, scale, max_size, opt)
self.dataset = dataset
self.module = module
self.transformer = transformer
if module and transformer then
self.detec = fbcoco.ImageDetect(self.module, self.transformer, scale, max_size)
end
self.num_iter = opt.test_num_iterative_loc or 1
self.nms_thresh = opt.test_nms_threshold or 0.3
self.bbox_vote_thresh = opt.test_bbox_voting_nms_threshold or 0.5
self.threads = Threads(10,
function()
require 'torch'
end)
if module then
module:apply(function(m)
if torch.type(m) == 'nn.DataParallelTable' then
self.data_parallel_n = #m.gpuAssignments
end
end)
print('data_parallel_n', self.data_parallel_n)
-- to determine num of output classes
local input = {torch.CudaTensor(self.data_parallel_n or 2, 3, 224, 224),
torch.Tensor{1, 1, 1, 100, 100}:view(1, 5):expand(2, 5):cuda()}
module:forward(input)
self.num_classes = module.output[1]:size(2) - 1
self.thresh = torch.ones(self.num_classes):mul(-1.5)
end
end
function Tester:testOne(i)
local dataset = self.dataset
local thresh = self.thresh
local img_boxes = tds.hash()
local timer = torch.Timer()
local timer2 = torch.Timer()
local timer3 = torch.Timer()
timer:reset()
local boxes = dataset:getROIBoxes(i):float()
-- print('#boxes', boxes:size())
local im = dataset:getImage(i)
timer3:reset()
local all_output = {}
local all_bbox_pred = {}
local output, bbox_pred = self.detec:detect(im, boxes, self.data_parallel_n, true)
local num_classes = output:size(2) - 1
-- clamp predictions within image
local bbox_pred_tmp = bbox_pred:view(-1, 2)
bbox_pred_tmp:select(2,1):clamp(1, im:size(3))
bbox_pred_tmp:select(2,2):clamp(1, im:size(2))
table.insert(all_output, output)
table.insert(all_bbox_pred, bbox_pred)
for i = 2, self.num_iter do
-- have to copy to cuda because of torch/cutorch LongTensor differences
self.boxselect = self.boxselect or nn.SelectBoxes():cuda()
local new_boxes = self.boxselect:forward{output:cuda(), bbox_pred:cuda()}:float()
output, bbox_pred = self.detec:detect(im, new_boxes, self.data_parallel_n, false)
table.insert(all_output, output)
table.insert(all_bbox_pred, bbox_pred)
end
if opt.test_use_rbox_scores then
assert(#all_output > 1)
-- we use the scores from iter n+1 for the boxes at iter n
-- this means we lose one iteration worth of boxes
table.remove(all_output, 1)
table.remove(all_bbox_pred)
end
output = utils.joinTable(all_output, 1)
bbox_pred = utils.joinTable(all_bbox_pred, 1)
local tt2 = timer3:time().real
timer2:reset()
local nms_timer = torch.Timer()
for j = 1, num_classes do
local scores = output:select(2, j+1)
local idx = torch.range(1, scores:numel()):long()
local idx2 = scores:gt(thresh[j])
idx = idx[idx2]
local scored_boxes = torch.FloatTensor(idx:numel(), 5)
if scored_boxes:numel() > 0 then
local bx = scored_boxes:narrow(2, 1, 4)
bx:copy(bbox_pred:narrow(2, j*4+1, 4):index(1, idx))
scored_boxes:select(2, 5):copy(scores[idx2])
end
img_boxes[j] = utils.nms(scored_boxes, self.nms_thresh)
if opt.test_bbox_voting then
local rescaled_scored_boxes = scored_boxes:clone()
local scores = rescaled_scored_boxes:select(2,5)
scores:pow(opt.test_bbox_voting_score_pow or 1)
img_boxes[j] = utils.bbox_vote(img_boxes[j], rescaled_scored_boxes, self.test_bbox_voting_nms_threshold)
end
end
self.threads:synchronize()
local nms_time = nms_timer:time().real
if i % 1 == 0 then
print(('test: (%s) %5d/%-5d dev: %d, forward time: %.3f, '
.. 'select time: %.3fs, nms time: %.3fs, '
.. 'total time: %.3fs'):format(dataset.dataset_name,
i, dataset:size(),
cutorch.getDevice(),
tt2, timer2:time().real,
nms_time, timer:time().real));
end
return img_boxes, {output, bbox_pred}
end
function Tester:test()
self.module:evaluate()
self.dataset:loadROIDB()
local aboxes_t = tds.hash()
local raw_output = tds.hash()
local raw_bbox_pred = tds.hash()
for i = 1, self.dataset:size() do
local img_boxes, raw_boxes = self:testOne(i)
aboxes_t[i] = img_boxes
if opt.test_save_raw and opt.test_save_raw ~= '' then
raw_output[i] = raw_boxes[1]:float()
raw_bbox_pred[i] = raw_boxes[2]:float()
end
end
if opt.test_save_raw and opt.test_save_raw ~= '' then
torch.save(opt.test_save_raw, {raw_output, raw_bbox_pred})
end
aboxes_t = self:keepTopKPerImage(aboxes_t, 100) -- coco only accepts 100/image
local aboxes = self:transposeBoxes(aboxes_t)
aboxes_t = nil
return self:computeAP(aboxes)
end
function Tester:keepTopKPerImage(aboxes_t, k)
for j = 1,self.dataset:size() do
aboxes_t[j] = utils.keep_top_k(aboxes_t[j], k)
end
return aboxes_t
end
function Tester:transposeBoxes(aboxes_t)
-- print("Running topk. max= ", self.max_per_set)
local aboxes = tds.hash()
for j = 1, self.num_classes do
aboxes[j] = tds.hash()
for i = 1, self.dataset:size() do
aboxes[j][i] = aboxes_t[i][j]
end
end
return aboxes
end
function Tester:computeAP(aboxes)
return testCoco.evaluate(self.dataset.dataset_name, aboxes)
end