-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
227 lines (189 loc) · 6.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import copy
import scipy.io as sio
from keras.models import Model, Sequential
from keras.layers import Dense, Reshape, Flatten, Activation
from keras.optimizers import Adam,RMSprop
from keras.layers.convolutional import Convolution2D
from keras.applications.vgg16 import VGG16
from RL_network import PGAgent
from US_network import USNet
from keras import backend as K
from keras.datasets import cifar10
import pickle
import matplotlib.pyplot as plt
#GPU to run
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if __name__ == "__main__":
'''
Parameters:
dim_feature: the dimension of hashed feature, eg 16, 32, 64
rate: a factor that balance two rewards, set to be 1
num_epoch_total: the total epoch of two stage trainning
num_epoch_us: epoch of unsupervised network
num_epoch_rl: epoch of deep Q network
batchsize: used in both US network and deep Q network, 32 is a very common option.
alpha: Lamda_2 when assuming Lamda_1 = 1, 0.2 is a proper value
beta: Lamda_3 when assuming Lamda_1 = 1, 0.4 is a proper value
max_connection: the max capacity of connection between Nodes. In previous test,
it would be at most 300 for 64 dimensions, so 10000 indicates an
unlimited connection.
x_train: it's the Cifar10 feature, extracted by a vgg16 pretrained on ImageNet.
'''
dim_feature = 16
batchsize = 32
rate = 1
learning_rate = 0.0004
num_epoch_total = 1
num_epoch_us = 5
num_epoch_rl = 3
alpha = 0.2
beta = 0.4
max_connection = 10000
x_train = np.transpose(np.load('feat16_train.npy'))
print(np.mean(x_train, axis=(0,1)))
'''
Variables In Training:
loss_bf: the loss of unsupervised network BEFORE connection
xx: the node that is very reliable, which will 'guide' the non-reliable one.
yy: the node that is not reliable, which will 'follow the guide' from reliable one.
temp_xx: it indicates to the xx, but it's still in training process, so might not be the final one.
temp_yy: similar to temp_xx
finalrewards: sum of rewards after each action
env: the unsupervised network
rl: deep Q network
state: a square metrix to document the state of connection
score: rewards in one episode of actions
episode: the same defination in RL
'''
loss_bf = 0
xx = []
yy = []
temp_xx = []
temp_yy = []
finalrewards = []
env = USNet(dim_feature, batchsize, alpha, beta)
rl = PGAgent(dim_feature*dim_feature, dim_feature*dim_feature,dim_feature, batchsize)
state = np.zeros((dim_feature, dim_feature))
prev_x = None
score = 0
episode = 0
act_times = 0
rmsprop = RMSprop(lr=0.01)
opt=RMSprop(lr=learning_rate, rho=0.9, epsilon=1e-08, decay=0.0)
for total_epoch in range(num_epoch_total):
#pre-train for unsupervised network
env.model.compile(loss=env.TOLoss(xx,yy),optimizer=opt)
env.model.fit(x_train, x_train, batch_size=batchsize, epochs=num_epoch_us)
num_layer = 0
# deep Q Learning Process
for epoch in range(num_epoch_rl):
for num_minibatch in range(x_train.shape[0]/batchsize):
x_train_batch = x_train[num_minibatch*batchsize:min((num_minibatch+1)*batchsize,x_train.shape[0]),:]
loss_bf = 0
# a loop that will break when either not connecting or disconnecting.
while True:
cur_x = state
x = cur_x if np.sum(cur_x) != 0 else np.zeros((1,dim_feature*dim_feature))
x = np.reshape(x, (1, dim_feature*dim_feature))
prev_x = copy.deepcopy(cur_x)
act_times += 1
loss_bf = np.sum(env.return_loss(x_train_batch,xx,yy))
action1, action2, action3, prob = rl.act(x, act_times, cur_x)
flag = 0
fflag = 0
if action1 > -1:
i = 0
if state[int(action1/dim_feature), action1%dim_feature] == 1 or state[action1%dim_feature, int(action1/dim_feature)] == 1 or int(action1/dim_feature) == action1%dim_feature:
flag = 1
if flag == 0 or (len(xx) == 0 and int(action1/dim_feature) != action1%dim_feature):
xx.append(int(action1/dim_feature))
yy.append(action1%dim_feature)
loss_af1 = np.sum(env.return_loss(x_train_batch,xx,yy))
reward1 = rate*(loss_bf-loss_af1)
num_delete = 0
if action2 > -1:
if state[int(action2/dim_feature), action2%dim_feature] == 1:
fflag = 1
for i in range(len(xx)):
if xx[i]==int(action2/dim_feature) and yy[i]==action2%dim_feature:
del xx[i]
del yy[i]
break
loss_af2 = np.sum(env.return_loss(x_train_batch,xx,yy))
reward2 = rate*(loss_af1-loss_af2)
print('loss',loss_bf,loss_af1,loss_af2)
min_ambiguity = 0
min_index = -1
if len(xx) > max_connection and flag == 0:
for i in range(len(xx)-1):
min_ambiguity = max(min_ambiguity, abs(np.mean(np.mean(prob,axis = 0),axis = 0)[yy[i]]-0.5))
if min_ambiguity==abs(np.mean(np.mean(prob,axis = 0), axis = 0)[yy[i]]-0.5):
min_index = i
action2 = xx[min_index]*dim_feature+yy[min_index]
del xx[min_index]
del yy[min_index]
loss_af2 = np.sum(env.return_loss(x_train_batch,xx,yy))
reward2 = rate*(loss_bf-loss_af2)
state = np.zeros((dim_feature, dim_feature))
if len(xx)>0:
for i in range(len(xx)):
state[xx[i],yy[i]] = 1
if action3 == 1:
done = 1
else:
done = 0
score += reward1 + reward2
rl.remember(x, action1, action2, prob, reward1, reward2)
if done:
episode += 1
rl.train()
rl.remove_thr = 1.0/(dim_feature*dim_feature)
act_times = 0
print('Episode: %d - Score: %f.' % (episode, score))
score = 0
prev_x = None
break
loss_bf = np.sum(env.return_loss(x_train,[],[]))
loss_af = np.sum(env.return_loss(x_train,xx,yy))
print('final_reward', loss_bf-loss_af)
finalrewards.append(loss_bf-loss_af)
print('finalrewards',finalrewards)
print('xx',xx,yy,alpha,beta)
with open('xx.bin','wb') as xx_bin:
pickle.dump(xx,xx_bin)
with open('yy.bin','wb') as yy_bin:
pickle.dump(yy,yy_bin)
env.model.compile(loss=env.TOLoss(xx,yy),optimizer=opt)
env.model.fit(x_train, x_train, batch_size=batchsize, epochs=num_epoch_us )
x_test = np.transpose(np.load('feat16_test.npy'))
num_post = [1]*dim_feature
prob = np.zeros((x_train.shape[0], dim_feature))
w = env.model.predict(x_train)
for j in range(dim_feature):
prob[:,j] = w[:,j*dim_feature+j]
for i in range(len(xx)):
if j == yy[i]:
prob[:,yy[i]] += w[:,xx[i]*dim_feature+yy[i]]
num_post[yy[i]] += 1
prob[:,j] /= num_post[j]
prob_train = prob
num_post = [1]*dim_feature
prob = np.zeros((x_test.shape[0],dim_feature))
w = env.model.predict(x_test)
for j in range(dim_feature):
prob[:,j] = w[:,j*dim_feature+j]
for i in range(len(xx)):
if j == yy[i]:
prob[:,yy[i]] += w[:,xx[i]*dim_feature+yy[i]]
num_post[yy[i]] += 1
prob[:,j] /= num_post[j]
prob_test = prob
trainName = '%d_feat_train.mat' % dim_feature
testName = '%d_feat_test.mat' % dim_feature
sio.savemat(trainName, {'prob_train':prob_train})
sio.savemat(testName, {'prob_test':prob_test})
print('test',prob_test)
print('alpha')