-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
232 lines (205 loc) · 9.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import logging
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import time
import math
from dataloader import BreaKHis_v1Lister as lister
from dataloader import BreaKHis_v1Loader as DA
from model import *
from resnet import *
from torchvision import transforms
from tqdm import tqdm
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO, format='%(message)s')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
parser = argparse.ArgumentParser(description='BreakHis DKL')
parser.add_argument('--base_dir', default='/home/dthiagar/datasets/',
help='base_dir')
parser.add_argument('--resnet', type=int, default=18,
help='resnet model to use')
parser.add_argument('--datapath', default='BreaKHis_v1/histology_slides/breast/',
help='datapath')
parser.add_argument('--epochs', type=int, default=3000,
help='number of epochs to train')
parser.add_argument('--split', type=float, default=0.15,
help='percentage of data to be used for evaluation')
parser.add_argument('--loadmodel', type=int, default=None,
help='load model')
parser.add_argument('--checkpoints', default='models/BreaKHis_v1/',
help='save model')
parser.add_argument('--eval_train', type=bool, default=True,
help='evaluate train data every epoch')
parser.add_argument('--eval_test', type=bool, default=True,
help='evaluate test data every epoch')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
resnet_mapping = {18: resnet18, 50: resnet50, 101: resnet101, 152: resnet152}
resnet_type = resnet_mapping[args.resnet]
logger.info("ResNet Type: %s" % resnet_type.__name__)
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
images, all_params, labels = lister.dataloader(args.base_dir + args.datapath)
benign_images, malignant_images = images
benign_params, malignant_params = all_params
benign_labels, malignant_labels = labels
logger.info("Using %.2f of data for evaluation" % args.split)
num_benign_total, num_malignant_total = len(benign_images), len(malignant_images)
benign_indices, malignant_indices = list(range(num_benign_total)), list(range(num_malignant_total))
benign_split, malignant_split = int(np.floor(args.split * num_benign_total)), int(np.floor(args.split * num_malignant_total))
np.random.seed(3)
np.random.shuffle(benign_indices)
np.random.shuffle(malignant_indices)
train_idx, test_idx = benign_indices[benign_split:], benign_indices[:benign_split]
malignant_train_idx, malignant_test_idx = [num_benign_total + i for i in malignant_indices[malignant_split:]], [num_benign_total + i for i in malignant_indices[:malignant_split]]
train_idx.extend(malignant_train_idx)
test_idx.extend(malignant_test_idx)
images[0].extend(images[1])
all_params[0].extend(all_params[1])
labels[0].extend(labels[1])
images, all_params, labels = images[0], all_params[0], labels[0]
train_images, train_params, train_labels = [images[i] for i in train_idx], [
all_params[i] for i in train_idx], [labels[i] for i in train_idx]
test_images, test_params, test_labels = [images[i] for i in test_idx], [
all_params[i] for i in test_idx], [labels[i] for i in test_idx]
transform = transforms.Compose([
transforms.RandomRotation(90),
transforms.RandomHorizontalFlip(0.8),
transforms.RandomResizedCrop(224),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
test_transform = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
TrainImgLoader = torch.utils.data.DataLoader(
DA.ImageFolder(train_images, train_params,
train_labels, True, transform=transform),
batch_size=32, shuffle=True, num_workers=4, drop_last=False)
EvalTrainImgLoader = torch.utils.data.DataLoader(
DA.ImageFolder(train_images, train_params, train_labels,
True, transform=test_transform),
batch_size=128, shuffle=False, num_workers=1, drop_last=False)
EvalTestImgLoader = torch.utils.data.DataLoader(
DA.ImageFolder(test_images, test_params, test_labels,
False, transform=test_transform),
batch_size=128, shuffle=False, num_workers=1, drop_last=False)
feature_extractor = ResNetFeatureExtractor(resnet_type).cuda()
num_features = feature_extractor.out_dim
model = DKLModel(feature_extractor, num_dim=num_features).cuda()
if args.cuda:
logger.info("Using CUDA")
model.cuda()
lr = 0.0001
likelihood = gpytorch.likelihoods.SoftmaxLikelihood(
num_features=num_features, n_classes=2).cuda()
optimizer = optim.RMSprop([
{'params': model.feature_extractor.parameters(), 'lr': lr * 0.001},
{'params': model.gp_layer.hyperparameters(), 'lr': lr * 0.001},
{'params': model.gp_layer.variational_parameters()},
{'params': likelihood.parameters()},
], lr=lr, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', factor=0.9, patience=5, verbose=True)
completed_epochs = 0
if args.loadmodel:
logger.info("Finding model from at least epoch %s; if not that, closest to it" % args.loadmodel)
checkpoint_dir = args.base_dir + args.checkpoints
max_diff = -np.inf
max_epoch = args.loadmodel
for file in os.listdir(checkpoint_dir):
if file.endswith('.dat'):
l = file[:-4].split('_')
rn_type, epoch = l[2], int(l[-1])
diff = epoch - args.loadmodel
if (rn_type == resnet_type.__name__) and (diff > max_diff):
max_diff = diff
max_epoch = epoch
logger.info("Loading from model at epoch %s" % max_epoch)
state_split_file = args.base_dir + args.checkpoints + 'dkl_breakhis_%s_checkpoint_%d_%d.dat' % (resnet_type.__name__, int(args.split * 100), max_epoch)
state_file = args.base_dir + args.checkpoints + 'dkl_breakhis_%s_checkpoint_%d.dat' % (resnet_type.__name__, max_epoch)
if os.path.isfile(state_split_file):
logger.info("Loading from file with split in name")
state_file = state_split_file
assert os.path.isfile(state_file)
state = torch.load(state_file)
model.load_state_dict(state['model'])
likelihood.load_state_dict(state['likelihood'])
if 'optimizer' in state:
optimizer.load_state_dict(state['optimizer'])
completed_epochs = max_epoch
def train(epoch):
model.train()
likelihood.train()
mll = gpytorch.mlls.VariationalELBO(
likelihood, model.gp_layer, num_data=len(TrainImgLoader))
total_loss = 0.
for batch_idx, (image, params, label) in enumerate(TrainImgLoader):
start_time = time.time()
if args.cuda:
image, label = image.cuda(), label.cuda()
optimizer.zero_grad()
output = model(image)
loss = -mll(output, label)
total_loss += loss.item()
loss.backward()
optimizer.step()
logger.info('Train Epoch: %d [%03d/%03d], Loss: %.6f, Time: %.3f' % (
epoch + completed_epochs, batch_idx + 1, len(TrainImgLoader), loss.item(), time.time() - start_time))
return total_loss
def test(train=True, test=True):
model.eval()
likelihood.eval()
train_correct = 0
if train:
for image, params, label in tqdm(EvalTrainImgLoader):
if args.cuda:
image, label = image.cuda(), label.cuda()
with torch.no_grad():
distr = model(image)
output = likelihood(distr)
pred = output.probs.argmax(1)
train_correct += pred.eq(label.view_as(pred)).cpu().sum()
logger.info('Train Accuracy: {}/{} ({}%)'.format(train_correct, len(EvalTrainImgLoader.dataset), 100. * train_correct / float(len(EvalTrainImgLoader.dataset))))
correct = 0
if test:
for image, params, label in tqdm(EvalTestImgLoader):
if args.cuda:
image, label = image.cuda(), label.cuda()
with torch.no_grad():
distr = model(image)
output = likelihood(distr)
pred = output.probs.argmax(1)
correct += pred.eq(label.view_as(pred)).cpu().sum()
logger.info('Test_Accuracy: {}/{} ({}%)'.format(correct, len(EvalTestImgLoader.dataset), 100. * correct / float(len(EvalTestImgLoader.dataset))))
for epoch in range(1, args.epochs - completed_epochs + 1):
true_epoch = epoch + completed_epochs
with gpytorch.settings.use_toeplitz(False), gpytorch.settings.max_preconditioner_size(0):
loss = train(epoch)
test(train=args.eval_train, test=args.eval_test)
scheduler.step(loss)
state_dict = model.state_dict()
likelihood_state_dict = likelihood.state_dict()
optimizer_state_dict = optimizer.state_dict()
torch.save({'model': state_dict, 'likelihood': likelihood_state_dict, 'optimizer': optimizer_state_dict},
args.base_dir + args.checkpoints + 'dkl_breakhis_%s_checkpoint_%d_%d.dat' % (resnet_type.__name__, int(args.split * 100), epoch + completed_epochs))