-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolve_MIS_38.m
82 lines (69 loc) · 2.54 KB
/
solve_MIS_38.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function [tvals,Y,ns,nf] = solve_MIS_38(fs,ff,tvals,Y0,hs,hf)
% usage: [tvals,Y,ns,nf] = solve_MIS_38(fs,ff,tvals,Y0,hs,hf)
%
% Fixed time step MIS-3/8, explicit+explicit multirate Runge-Kutta
% method for the vector-valued ODE problem
% y' = fs(t,Y) + ff(t,Y), t >= t0, y in R^n,
% Y0 = [y1(t0), y2(t0), ..., yn(t0)]'.
% The individual time steps are performed using the step_MIS.m
% function; this routine sets the inner and outer Butcher tables to
% the "3/8-Rule" table, and calls step_MIS.m in a loop to fill the
% output arrays.
%
% Inputs:
% fs = function handle for (slow) ODE RHS
% ff = function handle for (fast) ODE RHS
% tvals = array of desired output times, [t0, t1, t2, ..., tN]
% Y0 = solution vector at start of step (column vector of length n)
% hs = step size to use for slow time scale
% hf = desired step size to use for fast time scale,
% hf <= hs*min_{i}(co(i+1)-co(i))
% Note: this is only a target step size; in fact we
% will determine each substepping interval and find
% hinner <= hi such that we take an integer number of
% steps to subcycle up to each outer stage time.
%
% Outputs:
% tvals = the same as the input array tvals
% Y = [y(t0), y(t1), y(t2), ..., y(tN)], where each
% y(t*) is a column vector of length n.
% ns = number of 'slow' time steps taken by method
% nf = number of 'fast' time steps taken by method
%
% Daniel R. Reynolds
% Department of Mathematics
% Southern Methodist University
% July 2018
% All Rights Reserved
% set 3/8-Rule Butcher table
B = butcher('3/8-Rule-ERK');
% initialize output arrays
N = length(tvals)-1;
n = length(Y0);
Y = zeros(n,N+1);
Y(:,1) = Y0;
% initialize diagnostics
ns = 0;
nf = 0;
% set the solver parameters
ONEMSM = 1-sqrt(eps); % coefficient to account for floating-point roundoff
% initialize temporary variables
t = tvals(1);
Ynew = Y0;
Jf = @(t,y) 0; % no Jacobian required for explicit+explicit methods
% iterate over output time steps
for tstep = 1:N
% loop over internal time steps to get to desired output time
while ((t-tvals(tstep+1))*hs < 0)
% bound internal time step
h = min([hs, tvals(tstep+1)-t]); % stop at output times
% call MIS stepper to do the work, increment counters
[Ynew,m] = step_MIS(fs,ff,Jf,t,Ynew,B,B,h,hf);
ns = ns + 1;
nf = nf + m;
t = t + h;
end
% store updated solution in output array
Y(:,tstep+1) = Ynew;
end % time output loop
% end function