-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmultirate_driver_p2.m
83 lines (77 loc) · 2.72 KB
/
multirate_driver_p2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% multirate driver for stiff brusselator test problem:
% [u]' [ a - (w+1)*u + u^2*v ] [ 0 ]
% [v]' = [ w*u - u^2*v ] + [ 0 ] = fslow(u,v,w) + ffast(u,v,w)
% [w]' [ -u*w ] [ (b-w)/ep ]
% where u(0) = 1.2, v(0) = 3.1 and w(0) = 3, with prameters a=1,
% b=3.5 and ep=5e-6. We evaluate over the time interval [0,10].
%
% Daniel R. Reynolds
% Department of Mathematics
% Southern Methodist University
% July 2018
% All Rights Reserved
clear
% set problem parameters
a = 1;
b = 3.5;
ep = 1e-3;
fs = @(t,y) [a - (y(3)+1)*y(1) + y(1)*y(1)*y(2); y(3)*y(1) - y(1)*y(1)*y(2); -y(3)*y(1)];
ff = @(t,y) [0; 0; (b-y(3))/ep];
fn = @(t,y) fs(t,y) + ff(t,y);
Jff = @(t,y) [0, 0, 0; 0, 0, 0; 0, 0, -1/ep ];
Tf = 10;
tout = linspace(0,Tf,100);
hmin = 1e-7;
hmax = 1.0;
rtol = 1e-3;
atol = 1e-14*ones(3,1);
u0 = 1.2;
v0 = 3.1;
w0 = 3;
Y0 = [u0; v0; w0];
ntests = 7;
test_adaptive = false;
% construct reference solution
opts = odeset('RelTol',1e-12, 'AbsTol',atol,'InitialStep',hmin/10, 'MaxStep',hmax);
[t,Ytrue] = ode15s(fn, tout, Y0, opts);
figure()
plot(tout,Ytrue)
xlabel('t','FontSize',12), ylabel('y','FontSize',12)
title('Brusselator ODE test','FontSize',14)
set(gca,'FontSize',12)
print('-dpng','brusselator')
% perform convergence tests with fixed-step multirate solvers
solvers = {@solve_MIS_KW3, @solve_MIS_38, @solve_RMIS_KW3, @solve_RMIS_38};
snames = {'MIS-KW3', 'MIS-3/8', 'RMIS-KW3', 'RMIS-3/8'};
orders = [3, 3, 3, 4];
for isol=1:length(solvers)
solver = solvers{isol};
fprintf('\nRunning convergence test with %s integrator (theoretical order %i)\n',...
snames{isol},orders(isol))
for i=1:ntests
hs = Tf/100/2^(i+1);
hf = hs/100;
[t,Y,ns,nf] = solver(fs, ff, tout, Y0, hs, hf);
err_max(i) = max(max(abs(Y'-Ytrue)));
err_rms(i) = sqrt(sum(sum((Y'-Ytrue).^2))/numel(Y));
fprintf(' Accuracy/Work Results (hs = %.3e, hf = %.3e):\n', hs, hf)
if (i>1)
fprintf(' maxerr = %.2e, rmserr = %.2e (order = %.2e)\n',...
err_max(i), err_rms(i), log(err_rms(i)/err_rms(i-1))/log(0.5));
else
fprintf(' maxerr = %.2e, rmserr = %.2e\n', err_max(i), err_rms(i));
end
fprintf(' slow steps = %i, fast steps = %i\n', ns, nf);
end
end
if (test_adaptive)
% run with a adaptive RMIS+MIS method
fprintf('\nRunning with RMIS+MIS adaptive integrator\n')
[t,Y,ns,nf] = solve_RMIS_MIS_38(fs,ff,tout,Y0,rtol,atol,hmin,hmax,hmin,hmin);
err_max = max(max(abs(Y'-Ytrue)));
err_rms = sqrt(sum(sum((Y'-Ytrue).^2))/numel(Y));
fprintf('Accuracy/Work Results:\n')
fprintf(' maxerr = %.5e, rmserr = %.5e\n', err_max, err_rms);
fprintf(' slow steps = %i, fast steps = %i\n', ns, nf);
end
% end of script