-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain_manual_xml.py
1127 lines (925 loc) · 51 KB
/
main_manual_xml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This requires one to manually download XMLs. See ReadMe for details
"""
# Initial Code: https://oaref.blogspot.com/2019/01/web-scraping-using-python-part-2.html
import os
import pathlib
import random
import re
import time
from datetime import datetime, timedelta
from typing import List, Union, Any, Tuple
import numpy as np
import pandas as pd
import requests
import requests_cache
from bs4 import BeautifulSoup
from dateutil import parser
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from classes import EbayVariables
from plotting import ebay_plot, plot_profits
from util_request import load_agents, request_link
# pylint: disable=line-too-long
# pylint: disable=multiple-statements
def validate_inputs(query: str,
e_vars: EbayVariables,
msrp: float = 0,
min_price: float = 0,
max_price: float = 10000,
min_date: datetime = datetime.now() - timedelta(days=90)) -> bool:
"""
Validates the inputs of the ebay_search function and if any are
Parameters
----------
query : The main query to search on eBay
e_vars : An instance of EbayVariables
msrp : The msrp of the item being searched
min_price : The minimum price to search for
max_price : The maximum price to search for
min_date : The earliest eBay sale to scrape, anything before this is discarded
Returns
-------
A boolean value if inputs are valid or not.
"""
validation_success = True
if not isinstance(query, str):
print('query is not a string!')
validation_success = False
if not isinstance(msrp, float) and not isinstance(msrp, int):
print('msrp is not a float or int!')
validation_success = False
if not isinstance(min_price, float) and not isinstance(min_price, int):
print('min_price is not a float or int!')
validation_success = False
if not isinstance(max_price, float) and not isinstance(max_price, int):
print('max_price is not a float or int!')
validation_success = False
if not isinstance(min_date, datetime):
print('min_date is not a Datetime!')
validation_success = False
if not isinstance(e_vars.run_cached, bool):
print('EbayVariables class variable run_cached is not a bool!')
validation_success = False
if not isinstance(e_vars.sleep_len, float) and not isinstance(e_vars.sleep_len, int):
print('EbayVariables class variable sleep_len is not a bool!')
validation_success = False
if not isinstance(e_vars.show_plots, bool):
print('EbayVariables class variable show_plots is not a bool!')
validation_success = False
if not isinstance(e_vars.profit_plot, bool):
print('EbayVariables class variable profit_plot is not a bool!')
validation_success = False
if not isinstance(e_vars.main_plot, bool):
print('EbayVariables class variable main_plot is not a bool!')
validation_success = False
if not isinstance(e_vars.trend_type, str):
print('EbayVariables class variable trend_type is not a string!')
validation_success = False
if e_vars.trend_type != 'none' and e_vars.trend_type != 'linear' and e_vars.trend_type != 'poly' and \
e_vars.trend_type != 'roll':
print(
'EbayVariables class variable trend_type is not a valid! Must be one of "poly", "linear", "roll" or "none"')
validation_success = False
if not isinstance(e_vars.trend_param, list):
print('EbayVariables class variable trend_param is not an int!')
validation_success = False
elif e_vars.trend_type == 'linear' and (len(e_vars.trend_param) != 1 or not isinstance(e_vars.trend_param[0], int)):
print('EbayVariables class variable trend_type must be a list with a single integer when trend_type = linear!')
validation_success = False
elif e_vars.trend_type == 'roll' and (len(e_vars.trend_param) != 1 or not isinstance(e_vars.trend_param[0], int)):
print('EbayVariables class variable trend_type must be a list with a single integer when trend_type = roll!')
validation_success = False
elif e_vars.trend_type == 'poly' and (
len(e_vars.trend_param) != 2 or not isinstance(e_vars.trend_param[0], int) or not isinstance(
e_vars.trend_param[1], int)):
print('EbayVariables class variable trend_type must be a list with of two integers when trend_type = poly!')
validation_success = False
if not isinstance(e_vars.sacat, int):
print('EbayVariables class variable sacat is not an int!')
validation_success = False
if not isinstance(e_vars.tax_rate, float) and isinstance(e_vars.tax_rate, int):
print('EbayVariables class variable tax_rate is not a float or int!')
validation_success = False
elif e_vars.tax_rate >= 1 or e_vars.tax_rate < 0:
print('EbayVariables class variable tax_rate must be between 0 and 1!')
validation_success = False
if not isinstance(e_vars.store_rate, float) and not isinstance(e_vars.store_rate, int):
print('EbayVariables class variable store_rate is not a float or int!')
validation_success = False
elif e_vars.store_rate >= 1 or e_vars.store_rate < 0:
print('EbayVariables class variable store_rate must be between 0 and 1!')
validation_success = False
if not isinstance(e_vars.non_store_rate, float) and not isinstance(e_vars.non_store_rate, int):
print('EbayVariables class variable non_store_rate is not a float or int!')
validation_success = False
elif e_vars.non_store_rate >= 1 or e_vars.non_store_rate < 0:
print('EbayVariables class variable non_store_rate must be between 0 and 1!')
validation_success = False
if not isinstance(e_vars.country, str):
print('EbayVariables class variable country is not a string!')
validation_success = False
elif e_vars.country != 'USA' and e_vars.country != 'UK':
print('EbayVariables class variable country must be "USA" or "UK"!')
validation_success = False
if not isinstance(e_vars.ccode, str):
print('EbayVariables class variable ccode is not a string!')
validation_success = False
if not isinstance(e_vars.days_before, int):
print('EbayVariables class variable days_before is not a int!')
validation_success = False
elif e_vars.days_before < 1:
print('EbayVariables class variable days_before must be >= 1!')
validation_success = False
if not isinstance(e_vars.feedback, bool):
print('EbayVariables class variable feedback is not a bool!')
validation_success = False
if not isinstance(e_vars.quantity_hist, bool):
print('EbayVariables class variable quantity_hist is not a bool!')
validation_success = False
if not isinstance(e_vars.desc_ignore_list, list):
print('EbayVariables class variable desc_ignore_list is not a list!')
validation_success = False
if not isinstance(e_vars.extra_title_text, str):
print('EbayVariables class variable extra_title_text is not a string!')
validation_success = False
if not isinstance(e_vars.brand_list, list):
print('EbayVariables class variable brand_list is not a list!')
validation_success = False
if not isinstance(e_vars.model_list, list):
print('EbayVariables class variable model_list is not a list!')
validation_success = False
if not isinstance(e_vars.debug, bool):
print('EbayVariables class variable debug is not a bool!')
validation_success = False
if not isinstance(e_vars.verbose, bool):
print('EbayVariables class variable verbose is not a bool!')
validation_success = False
return validation_success
def get_purchase_hist(trs, e_vars: EbayVariables, sold_list: List[Union[float, int, datetime, datetime]],
sold_hist_url: str) -> Tuple[
List[Union[float, int, datetime]], Union[Union[str, datetime], Any], Union[str, Any]]:
"""
Parameters
----------
trs :
e_vars :
sold_list :
sold_hist_url :
Returns
-------
"""
bin_date, bin_datetime = '', ''
# Typically these are true
price_col = 2
date_col = 4
quant_col = 3
trs = trs.find('table', "app-table__table").find_all('tr')
for tr in trs:
ths = tr.find_all('th')
for i, th in enumerate(ths):
if 'PRICE' in th.text.upper():
price_col = i
elif 'QUANT' in th.text.upper():
quant_col = i
elif 'DATE' in th.text.upper():
date_col = i
tds = tr.find_all('td')
spec_offer = False
if len(tds) > 1:
# buyer = tds[1].text
try:
if 'SPECIAL OFFER' in tds[price_col].text.upper():
price = ''
spec_offer = True
else:
price = float(re.sub(r'[^\d.]+', '', tds[price_col].text))
except Exception as e:
if e_vars.verbose: print('get_purchase_hist-price', tds[price_col].text, e, sold_hist_url)
price = ''
if price or spec_offer:
quantity = int(tds[quant_col].text)
sold_datetime = parser.parse(tds[date_col].text)
sold_date = sold_datetime.replace(hour=0, minute=0, second=0, microsecond=0)
if not bin_date:
bin_date, bin_datetime = sold_date, sold_datetime
bin_date, bin_datetime = max(bin_date, sold_date), max(bin_datetime, sold_datetime)
if e_vars.verbose: print('get_purchase_hist', price, quantity, sold_datetime)
if sold_date > datetime.now() - timedelta(e_vars.days_before):
sold_list.append([price, quantity, sold_date, sold_datetime])
return sold_list, bin_date, bin_datetime
def get_offer_hist(trs, e_vars: EbayVariables, sold_list: List[Union[float, int, datetime, datetime]],
sold_hist_url: str) -> Tuple[
List[Union[float, int, datetime]], Union[Union[str, datetime], Any], Union[str, Any]]:
"""
Parameters
----------
trs :
e_vars :
sold_list :
sold_hist_url :
Returns
-------
"""
off_date, off_datetime = '', ''
offer_col = 1
quant_col = 2
date_col = 3
trs = trs.find('table', "app-table__table").find_all('tr')
for tr in trs:
ths = tr.find_all('th')
for i, th in enumerate(ths):
if 'QUANT' in th.text.upper():
quant_col = i
elif 'DATE' in th.text.upper():
date_col = i
elif 'STATUS' in th.text.upper():
offer_col = i
tds = tr.find_all('td', )
# if e_vars.verbose: print('get_offer_hist-tds', tds)
if len(tds) > 1:
try:
quantity = int(tds[quant_col].text)
except Exception as e:
quantity = ''
if e_vars.verbose: print('get_offer_hist-trs', e, sold_hist_url)
if quantity:
# buyer = tds[0].text
offer_status = tds[offer_col].text
sold_datetime = parser.parse(tds[date_col].text)
sold_date = sold_datetime.replace(hour=0, minute=0, second=0, microsecond=0)
if not off_date:
off_date, off_datetime = sold_date, sold_datetime
off_date, off_datetime = max(off_date, sold_date), max(off_datetime, sold_datetime)
if e_vars.verbose: print('get_offer_hist', offer_status, quantity, sold_datetime)
if offer_status == 'Accepted':
if sold_date > datetime.now() - timedelta(e_vars.days_before):
sold_list.append(['', quantity, sold_date, sold_datetime])
return sold_list, off_date, off_datetime
# XML Formatter: https://jsonformatter.org/xml-formatter
def get_quantity_hist(sold_hist_url: str,
sold_list: List[Union[float, int, datetime, datetime]],
adapter: requests,
e_vars: EbayVariables) -> List[Union[float, int, datetime, datetime]]:
"""
Parameters
----------
sold_hist_url :
sold_list :
adapter :
e_vars :
Returns
-------
"""
sl_date, sl_datetime = '', ''
# eBays servers will kill your connection if you hit them too frequently
time.sleep(e_vars.sleep_len * random.uniform(0, 1))
try:
# We don't want to cache all the calls into the individual listings, they'll never be repeated
source = request_link(sold_hist_url, adapter, cache=False, e_vars=e_vars, page_type='Quant_Hist')
soup = BeautifulSoup(source, 'lxml')
# items = soup.find_all('tr')
fixed_price_table = soup.find('div', attrs={'class': 'app-table fixed-price'})
offer_table = soup.find('div', attrs={'class': 'app-table offer'})
# eBay has a number of possible tables in the purchase history, Offer History, Offer Retraction History,
# Purchase History, listings don't have to have all of them so just need to check
bin_date, off_date = '', ''
bin_datetime, off_datetime = '', ''
if fixed_price_table:
sold_list, bin_date, bin_datetime = get_purchase_hist(fixed_price_table, e_vars, sold_list, sold_hist_url)
if offer_table:
sold_list, off_date, off_datetime = get_offer_hist(offer_table, e_vars, sold_list, sold_hist_url)
if not bin_date and off_date:
sl_date, sl_datetime = off_date, off_datetime
elif not off_date and bin_date:
sl_date, sl_datetime = bin_date, bin_datetime
elif off_date and bin_date:
sl_date, sl_datetime = max(bin_date, off_date), max(bin_datetime, off_datetime)
except Exception as e:
if e_vars.verbose: print('get_quantity_hist', e, sold_hist_url)
return sold_list, sl_date, sl_datetime
def sp_get_datetime(item, days_before_date, e_vars, sp_link):
"""
Parameters
----------
item :
days_before_date :
e_vars :
sp_link :
Returns
-------
"""
item_date, item_datetime = '', ''
try:
date_time = item.find('span', attrs={'class': 'POSITIVE'}).text
if 'Sold' in date_time:
date_txt = date_time.replace('Sold', '').replace(',', '').strip()
if e_vars.country == 'UK':
item_date = datetime.strptime(date_txt, "%d %b %Y")
else:
item_date = datetime.strptime(date_txt, "%b %d %Y")
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('sp_get_datetime-1', e, sp_link)
try:
current_year = datetime.now().year
current_month = datetime.now().month
orig_item_datetime = f"{current_year} {item.find('span', class_='s-item__endedDate').text}"
if e_vars.country == 'UK':
item_datetime = datetime.strptime(orig_item_datetime, '%Y %d-%b %H:%M')
else:
item_datetime = datetime.strptime(orig_item_datetime, '%Y %b-%d %H:%M')
# When we run early in the year
if current_month < 6 < item_datetime.month:
last_year = current_year - 1
item_datetime = item_datetime.replace(year=last_year)
item_date = item_datetime.replace(hour=0, minute=0)
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('sp_get_datetime-2', e, sp_link)
try:
orig_item_datetime = item.find('span', class_='s-item__title--tagblock__COMPLETED').text
orig_item_datetime = orig_item_datetime.replace('Sold item', '').replace('Sold', '').strip()
item_datetime = orig_item_datetime.replace(hour=0, minute=0, second=0, microsecond=0)
if e_vars.country == 'UK':
item_date = datetime.strptime(orig_item_datetime, '%b %d %Y')
else:
item_date = datetime.strptime(orig_item_datetime, '%d %b %Y')
item_date = item_date.replace(hour=0, minute=0, second=0, microsecond=0)
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('sp_get_datetime-3', e, sp_link)
try:
date_time = item.find('span', attrs={'class': 'POSITIVE'})
classes = date_time.find_all('span')
off_dict = {}
for c in classes:
cls_name = c.attrs['class'][0]
if cls_name not in off_dict:
off_dict[cls_name] = c.text
else:
off_dict[cls_name] = off_dict[cls_name] + c.text
for od in off_dict.values():
if 'Sold' in od:
date_txt = od.replace('Sold', '').replace(',', '').strip()
if e_vars.country == 'UK':
item_date = datetime.strptime(date_txt, "%d %b %Y")
else:
item_date = datetime.strptime(date_txt, "%b %d %Y")
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('sp_get_datetime-4', e, sp_link)
return item_date, item_datetime, days_before_date
def ebay_scrape(xml_file,
xml_file_name: str,
query: str,
df: pd.DataFrame,
adapter: requests,
e_vars: EbayVariables,
min_date: datetime = datetime(2020, 1, 1),
max_date: datetime = datetime(2020, 1, 1)) -> pd.DataFrame:
"""
Parameters
----------
base_url :
df :
adapter :
e_vars :
min_date :
Returns
-------
"""
def sp_get_item_link(item):
try:
item_link = item.find('a', class_='s-item__link')['href']
except Exception as e:
item_link = ''
if e_vars.verbose: print('sp_get_item_link', e)
return item_link
def sp_get_domestic(item):
try:
item_domestic = str(item.find('span', class_='s-item__location').text).startswith("From ") == False
except Exception as e:
# failed to find item location, meaning the item is domestic
item_domestic = True
if e_vars.verbose: print('sp_get_domestic', e)
return item_domestic
def sp_get_title(item):
try:
item_title = item.find('h3', class_='s-item__title').text
except Exception as e:
item_title = ''
if e_vars.verbose: print('sp_get_title', e, item_link)
return item_title
def sp_get_desc(item):
try:
item_desc = item.find('div', class_='s-item__subtitle').text
except Exception as e:
item_desc = ''
if e_vars.verbose: print('sp_get_desc', e, item_link)
return item_desc
def sp_get_price(item):
try:
item_price = item.find('span', class_='s-item__price').text
item_price = float(re.sub(r'[^\d.]+', '', item_price))
except Exception as e:
item_price = -1
if e_vars.verbose: print('sp_get_price', e, item_link)
return item_price
def sp_get_shipping(item):
try:
item_shipping = item.find('span', class_='s-item__shipping s-item__logisticsCost').text
if item_shipping.upper().find("FREE") == -1:
item_shipping = float(re.sub(r'[^\d.]+', '', item_shipping))
else:
item_shipping = 0
except Exception as e:
item_shipping = 0
if e_vars.verbose: print('sp_get_shipping', e, item_link)
return item_shipping
def ip_get_datetime(item_soup, days_before_date):
item_date, item_datetime = '', ''
try:
date_one = item_soup.find('div', attrs={'class': 'u-flL vi-bboxrev-posabs vi-bboxrev-dsplinline'})
date_one = date_one.find('span', attrs={'id': 'bb_tlft'})
date_one = date_one.text.replace("\n", " ").replace(",", "").strip().split()
try:
# Normally eBay stores the date as a 12 hour time, but at times it's 24 hour
if e_vars.country == 'UK':
item_datetime = datetime.strptime(f"{date_one[0]} {date_one[1]} {date_one[2]} {date_one[3]}",
"%d %b %Y %I:%M:%S")
else:
item_datetime = datetime.strptime(f"{date_one[0]} {date_one[1]} {date_one[2]} {date_one[3]}",
"%b %d %Y %I:%M:%S")
except Exception as e:
if e_vars.country == 'UK':
item_datetime = datetime.strptime(f"{date_one[0]} {date_one[1]} {date_one[2]} {date_one[3]}",
"%d %b %Y %H:%M:%S")
else:
item_datetime = datetime.strptime(f"{date_one[0]} {date_one[1]} {date_one[2]} {date_one[3]}",
"%b %d %Y %H:%M:%S")
item_datetime = item_datetime.replace(second=0, microsecond=0)
item_date = item_datetime.replace(hour=0, minute=0)
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('ip_get_datetime', e, item_link)
return item_date, item_datetime, days_before_date
def ip_get_loc_data(item_soup):
city, state, country_name = '', '', ''
try:
loc = item_soup.find('div', attrs={'class': 'iti-eu-bld-gry'})
loc = loc.find('span').text.split(',')
if len(loc) == 2:
city, state, country_name = loc[0].strip(), '', loc[1].strip()
elif len(loc) == 3:
city, state, country_name = loc[0].strip(), loc[1].strip(), loc[2].strip()
else:
raise Exception
except Exception as e:
if e_vars.verbose: print('ip_get_loc_data-1', e, item_link)
try:
loc_2 = item_soup.find('div', attrs={'class': 'vi-wp vi-VR-cvipCntr1'})
loc_2 = loc_2.find_all('tr', attrs={'class': 'vi-ht20'})
for l in loc_2:
if l.text.find('Item location:') > 0:
i_loc = l.find_all('div', attrs={'class': 'u-flL'})
loc_text = i_loc[1].text.split(',')
if len(loc_text) == 2:
city, state, country_name = loc_text[0].strip(), '', loc_text[1].strip()
elif len(loc_text) == 3:
city, state, country_name = loc_text[0].strip(), loc_text[1].strip(), loc_text[2].strip()
break
except Exception as e:
if e_vars.verbose: print('ip_get_loc_data-2', e, item_link)
return city, state, country_name
def ip_get_seller(item_soup):
seller, seller_fb, store = '', '', False
try:
seller_text = item_soup.find_all('span', attrs={'class': 'mbg-nw'})
seller = seller_text[0].text
seller_fb_text = item_soup.find_all('span', attrs={'class': 'mbg-l'})
seller_fb = int(seller_fb_text[0].find('a').text)
store_id = item_soup.find_all('div', attrs={'id': 'storeSeller'})
if len(store_id[0].text) > 0:
store = True
except Exception as e:
if e_vars.verbose: print('ip_get_seller', e, item_link)
return seller, seller_fb, store
def ip_get_datetime_card(item_soup, days_before_date):
item_date, item_datetime = '', ''
try:
con_card = item_soup.find_all('div',
attrs={
'class': 'nodestar-item-card-details__condition-row'})
for c in con_card:
if 'Ended' in c.text:
end_ele = c.text.replace('Ended:', '').replace(',', '').split()
item_datetime = datetime.strptime(
f"{end_ele[0]} {end_ele[1]} {end_ele[2]} {end_ele[3]} {end_ele[4]}",
"%b %d %Y %I:%M:%S %p")
item_datetime = item_datetime.replace(second=0, microsecond=0)
item_date = item_datetime.replace(hour=0, minute=0)
days_before_date = min(item_date, days_before_date)
except Exception as e:
if e_vars.verbose: print('ip_get_datetime_card', e,
item_link)
return item_date, item_datetime, days_before_date
def ip_get_quant_hist(item_soup, sold_list):
sl_date, sl_datetime = '', ''
quantity_sold, multi_list = 1, False
try:
iitem = item_soup.find_all('a', attrs={'class': 'vi-txt-underline'})
quantity_sold = int(iitem[0].text.split()[0])
multi_list = True
if e_vars.quantity_hist:
sold_hist_url = iitem[0]['href']
if e_vars.verbose: print('sold_hist_url', sold_hist_url)
sold_list, sl_date, sl_datetime = get_quantity_hist(sold_hist_url, sold_list, adapter=adapter,
e_vars=e_vars)
except Exception as e:
if e_vars.verbose: print('ip_get_quant_hist', e, item_link)
return quantity_sold, multi_list, sold_list, sl_date, sl_datetime
days_before_date = datetime.today()
days_before_date = days_before_date.replace(hour=0, minute=0, second=0, microsecond=0)
comp_date = days_before_date - timedelta(days=e_vars.days_before)
soup = BeautifulSoup(xml_file, 'lxml')
items = soup.find_all('li', attrs={'class': 's-item'})
for n, item in enumerate(items):
if e_vars.debug or e_vars.verbose: print('----------------------------')
curr_time = datetime.now()
if e_vars.verbose: print(curr_time)
if n > 0 and all(x in sp_get_title(item).upper() for x in query.upper().split()):
item_link = sp_get_item_link(item)
if e_vars.debug or e_vars.verbose: print('URL:', item_link)
item_date, item_datetime, days_before_date = sp_get_datetime(item, days_before_date, e_vars, xml_file_name)
if e_vars.debug or e_vars.verbose: print('Date-1:', item_date)
if e_vars.debug or e_vars.verbose: print('Datetime-1:', item_datetime)
if days_before_date < comp_date or days_before_date < min_date:
time_break = True
break
# Only need to add new records
line_datetime_found = df[['Link', 'Sold Datetime']].isin(
{'Link': [item_link], 'Sold Datetime': [item_datetime]}).all(
axis='columns').any()
nonmulti_date_line_found = (df[['Link', 'Sold Date', 'Multi Listing']].isin(
{'Link': [item_link], 'Sold Date': [item_date], 'Multi Listing': [0]}).all(
axis='columns').any())
# Issue #58 on GitHub
multi_date_found = (df[['Link', 'Sold Date', 'Multi Listing']].isin(
{'Link': [item_link], 'Sold Date': [item_date], 'Multi Listing': [1]}).all(
axis='columns').any() and item_date < (max_date - timedelta(2)))
if e_vars.verbose: print('line_datetime_found', line_datetime_found)
if e_vars.verbose: print('nonmulti_date_line_found', nonmulti_date_line_found)
if e_vars.verbose: print('multi_date_found', multi_date_found)
if not line_datetime_found and not nonmulti_date_line_found and not multi_date_found:
item_domestic = sp_get_domestic(item)
if e_vars.debug or e_vars.verbose: print('Domestic:', item_domestic)
item_title = sp_get_title(item)
if e_vars.debug or e_vars.verbose: print('Title:', item_title)
item_desc = sp_get_desc(item)
if e_vars.debug or e_vars.verbose: print('Desc:', item_desc)
item_price = sp_get_price(item)
if e_vars.debug or e_vars.verbose: print('Price:', item_price)
item_shipping = sp_get_shipping(item)
if e_vars.debug or e_vars.verbose: print('Shipping:', item_shipping)
item_tot = item_price + item_shipping
if e_vars.debug or e_vars.verbose: print('Total:', item_tot)
quantity_sold, sold_list, multi_list = 1, [], False
seller, seller_fb, store = '', '', False
city, state, country_name = '', '', ''
if e_vars.feedback or e_vars.quantity_hist:
time.sleep(e_vars.sleep_len * random.uniform(0, 1))
# We don't want to cache all the calls into the individual listings, they'll never be repeated
isource = request_link(item_link, adapter, cache=False, e_vars=e_vars, page_type='Item')
item_soup = BeautifulSoup(isource, 'lxml')
# Check if this is the original item, or eBay trying to sell another item and having a redirect
oitems = item_soup.find_all('div', attrs={'class': 'nodestar-item-card-details__title'})
if len(oitems) > 0:
if e_vars.debug or e_vars.verbose: print(
'Search Link goes to similar item, finding original')
try:
oitems = item_soup.find_all('a', attrs={'class': 'nodestar-item-card-details__view-link'})
orig_link = oitems[0]['href']
except Exception as e:
print('Getting other kind of card')
items = item_soup.find_all('script')
orig_link = re.search('{"_type":"Action","URL":"(.*?)"', items[-1].contents[0]).group(1)
if not item_datetime:
item_date_temp, item_datetime, days_before_date = ip_get_datetime_card(item_soup,
days_before_date)
if item_date_temp:
item_date = item_date_temp
if e_vars.debug or e_vars.verbose: print('Date-2:', item_date)
if e_vars.debug or e_vars.verbose: print('Datetime-2:', item_datetime)
time.sleep(e_vars.sleep_len * random.uniform(0, 1))
# We don't want to cache all the calls into the individual listings, they'll never be repeated
source = request_link(orig_link, adapter, cache=False, e_vars=e_vars, page_type='Item')
item_soup = BeautifulSoup(source, 'lxml')
if not item_datetime:
item_date_temp, item_datetime, days_before_date = ip_get_datetime(item_soup,
days_before_date)
if item_date_temp:
item_date = item_date_temp
if e_vars.debug or e_vars.verbose: print('Date-3:', item_date)
if e_vars.debug or e_vars.verbose: print('Datetime-3:', item_datetime)
seller, seller_fb, store = ip_get_seller(item_soup)
if e_vars.debug or e_vars.verbose: print('Seller:', seller)
if e_vars.debug or e_vars.verbose: print('Seller Feedback:', seller_fb)
if e_vars.debug or e_vars.verbose: print('Store:', store)
city, state, country_name = ip_get_loc_data(item_soup)
if e_vars.debug or e_vars.verbose: print('City:', city)
if e_vars.debug or e_vars.verbose: print('State:', state)
if e_vars.debug or e_vars.verbose: print('Country Name:', country_name)
# Sometimes the datetime isn't on the page for multilistings so we get the most recent sale
quantity_sold, multi_list, sold_list, sl_date, sl_datetime = ip_get_quant_hist(item_soup,
sold_list)
if e_vars.debug or e_vars.verbose: print('multi_list:', multi_list)
if multi_list:
if e_vars.debug or e_vars.verbose: print('Quantity Sold:', quantity_sold)
if e_vars.debug or e_vars.verbose: print('sold_list:', sold_list)
if e_vars.debug or e_vars.verbose: print('sold_list_max_date:', sl_date)
if e_vars.debug or e_vars.verbose: print('sold_list_max_datetime:', sl_datetime)
if not item_date:
item_date_temp, item_datetime = sl_date, sl_datetime
days_before_date = min(sl_date, days_before_date)
if item_date_temp:
item_date = item_date_temp
if e_vars.debug or e_vars.verbose: print('Date-4:', item_date)
if e_vars.debug or e_vars.verbose: print('Datetime-4:', item_datetime)
brand = ''
title = item_title
for brand_val in e_vars.brand_list:
if brand_val.upper() in title.upper():
brand_val = brand_val.replace(' ', '')
brand = brand_val
model = ''
for model_val in e_vars.model_list:
if model_val[0].upper() in title.upper():
model = model_val[0].replace(' ', '')
brand = model_val[1].replace(' ', '')
if e_vars.verbose: print('Brand', brand)
if e_vars.verbose: print('Model', model)
sold_list = np.array(sold_list)
ignor_val = 0
if e_vars.domestic_only and item_domestic == False:
ignor_val = 1
for di in e_vars.desc_ignore_list:
if item_desc.upper().find(di.upper()) >= 0:
ignor_val = 1
break
if not item_datetime and item_date:
item_datetime = item_date
if days_before_date < comp_date or min(item_date, days_before_date) < min_date:
time_break = True
break
if sold_list.size == 0:
try:
cap_sum = df[(df['Link'] == item_link)]['Quantity'].sum()
except Exception as e:
cap_sum = 0
if e_vars.debug or e_vars.verbose: print('ebay_scrape-cap_sum', e, item_link)
df__new = {'Title' : item_title, 'Brand': brand, 'Model': model,
'description' : item_desc, 'Price': item_price,
'Shipping' : item_shipping, 'Total Price': item_tot, 'Sold Date': item_date,
'Sold Datetime' : item_datetime, 'Link': item_link, 'Seller': seller,
'Multi Listing' : multi_list, 'Quantity': quantity_sold - cap_sum,
'Seller Feedback': seller_fb,
'Ignore' : ignor_val, 'Store': store, 'City': city, 'State': state,
'Country' : country_name, 'Sold Scrape Datetime': curr_time}
if not df[['Link', 'Sold Datetime']].isin(
{'Link': [item_link], 'Sold Datetime': [item_datetime]}).all(
axis='columns').any() and item_tot > 0 and (quantity_sold - cap_sum) > 0:
if e_vars.verbose: print('non-multi', df__new)
df = df.append(df__new, ignore_index=True)
# Considered processing as went along, more efficient to just remove duplicates in postprocessing
else:
for sale in sold_list:
# When scraping multilistings they can go back months, years even which really throws off graphs
# Generally best to just ignore values far in the past
if sale[2] < datetime.now() - timedelta(days=90):
ignor_val = 1
sale_price = item_price
if sale[0]:
sale_price = sale[0]
df__new = {'Title' : item_title, 'Brand': brand, 'Model': model,
'description' : item_desc, 'Price': sale_price,
'Shipping' : item_shipping, 'Total Price': item_tot, 'Sold Date': sale[2],
'Sold Datetime': sale[3], 'Link': item_link, 'Seller': seller,
'Multi Listing': multi_list, 'Quantity': sale[1], 'Seller Feedback': seller_fb,
'Ignore' : ignor_val, 'Store': store, 'City': city, 'State': state,
'Country' : country_name, 'Sold Scrape Datetime': curr_time}
# There's a chance when we get to multiitem listings we'd be reinserting data, this is to prevent it
if not df[['Link', 'Sold Datetime']].isin(
{'Link': [item_link], 'Sold Datetime': [sale[3]]}).all(
axis='columns').any() and item_tot > 0:
if e_vars.verbose: print('multi', df__new)
df = df.append(df__new, ignore_index=True)
tot_sale_quant = np.sum(sold_list[:, 1])
if tot_sale_quant < quantity_sold:
# On some listings the offer list has scrolled off (only shows latest 100) despite some beint accepted
# In order to not lose the data I just shove everything into one entry, assuming the regular price
# Not perfect, but no great alternatives
# The main issue here of course is that now I'm assigning a bunch of sales to a semi-arbitrary date
df__new = {'Title' : item_title, 'Brand': brand, 'Model': model,
'description' : item_desc, 'Price': item_price,
'Shipping' : item_shipping,
'Total Price' : item_tot, 'Sold Date': item_date,
'Sold Datetime': item_datetime, 'Link': item_link, 'Seller': seller,
'Quantity' : quantity_sold - tot_sale_quant,
'Multi Listing': multi_list, 'Seller Feedback': seller_fb, 'Ignore': 2,
'Store' : store, 'City': city, 'State': state,
'Country' : country_name, 'Sold Scrape Datetime': curr_time}
# There's a chance when we get to multiitem listings we'd be reinserting data, this is to prevent it
if not df[['Link', 'Sold Datetime', 'Quantity']].isin(
{'Link' : [item_link], 'Sold Datetime': [item_datetime],
'Quantity': [quantity_sold - tot_sale_quant]}).all(
axis='columns').any() and item_tot > 0:
if e_vars.verbose: print('multi-extra', df__new)
df = df.append(df__new, ignore_index=True)
return df
def ebay_search(query: str,
e_vars: EbayVariables,
msrp: float = 0,
min_price: float = 0,
max_price: float = 10000,
min_date: datetime = datetime.now() - timedelta(days=365)) -> pd.DataFrame:
"""
The main function of the project which searches eBay for a query, gathering all sold listings and outputting a
dataframe of the search query and generates basic plots on the data.
Parameters
----------
query : The main query to search on eBay
e_vars : An instance of EbayVariables
msrp : The msrp of the item being searched
min_price : The minimum price to search for
max_price : The maximum price to search for
min_date : The earliest eBay sale to scrape, anything before this is discarded
Returns
-------
A dataframe containing the sales history of the search query
"""
if e_vars.verbose: pd.set_option('display.max_rows', None)
if e_vars.verbose: pd.set_option('display.max_columns', None)
if e_vars.verbose: pd.set_option('display.width', None)
if e_vars.verbose: pd.set_option('display.max_colwidth', None)
start = time.time()
print(query)
start_datetime = datetime.today().strftime("%Y%m%d%H%M%S")
# https://realpython.com/caching-external-api-requests/
curr_path = pathlib.Path(__file__).parent.absolute()
if not os.path.exists('Spreadsheets'):
os.makedirs('Spreadsheets')
if not os.path.exists('Images'):
os.makedirs('Images')
cache_name = f"{curr_path}\\cache_{start_datetime}"
requests_cache.install_cache(cache_name, backend='sqlite', expire_after=300)
retry_strategy = Retry(
total=5,
status_forcelist=[429, 500, 502, 503, 504, 404],
method_whitelist=["HEAD", "GET", "OPTIONS"],
backoff_factor=1
)
http = HTTPAdapter(max_retries=retry_strategy)
adapter = requests.Session()
adapter.mount("https://", http)
adapter.mount("http://", http)
# https://stackoverflow.com/questions/35807605/create-a-file-if-it-doesnt-exist?lq=1
filename = query + e_vars.extra_title_text + '.xlsx'
try:
df = pd.read_excel('Spreadsheets/' + filename, index_col=0, engine='openpyxl')
df = df.astype({'Brand': 'object'})
df = df.astype({'Model': 'object'})
# When saving the file, at times 0.000001 seconds might be added or subtracted from the Sold Datetime
# This causes a mismatch when comparing datetimes, causing duplicates and wasting time rechecking listings
# Testing on the 3060, adding this brought runtimes down from eight minutes to one minute.
df['Sold Datetime'] = df['Sold Datetime'].dt.round('min')
df['Sold Date'] = df['Sold Date'].dt.round('min')
except Exception as e:
# if file does not exist, create it
df_dict = {'Title' : [], 'Brand': [], 'Model': [], 'description': [], 'Price': [], 'Shipping': [],
'Total Price': [], 'Sold Date': [], 'Sold Datetime': [], 'Quantity': [], 'Multi Listing': [],
'Seller' : [], 'Seller Feedback': [], 'Link': [], 'Store': [], 'Ignore': [], 'City': [],
'State' : [], 'Country': [], 'Sold Scrape Datetime': []}
df = pd.DataFrame(df_dict)
if e_vars.verbose or e_vars.debug: print('ebay_search-df_load:', e)
if e_vars.run_cached:
print(
f'WARNING: Cannot find "{filename}". In order to use run_cached = True an extract must already exists. Try setting run_cached=False first and rerunning.')
return None
try:
df_sum = pd.read_excel('summary.xlsx', index_col=0, engine='openpyxl')
except Exception as e:
if e_vars.verbose: print('Creating summary.xlsx file')
# if file does not exist, create it
dict_sum = {'Run Datetime' : [], 'query': [], 'Country': [], 'MSRP': [],
'Past Week Median Price' : [],
'Median Price' : [], 'Past Week Average Price': [],
'Average Price' : [], 'Total Sold': [], 'Total Sales': [],