-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
147 lines (113 loc) · 5.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# help functions are adapted from original mean teacher network
# https://github.com/CuriousAI/mean-teacher/tree/master/pytorch
import numpy as np
import torch
import torch.nn.functional as F
from torch.optim import Optimizer
class OldWeightEMA (object):
"""
Exponential moving average weight optimizer for mean teacher model
"""
def __init__(self, target_net, source_net, alpha=0.999):
self.target_params = list(target_net.parameters())
self.source_params = list(source_net.parameters())
self.alpha = alpha
for p, src_p in zip(self.target_params, self.source_params):
p.data[:] = src_p.data[:]
def step(self):
one_minus_alpha = 1.0 - self.alpha
for p, src_p in zip(self.target_params, self.source_params):
p.data.mul_(self.alpha)
p.data.add_(src_p.data * one_minus_alpha)
def sigmoid_rampup(current, rampup_length):
"""Exponential rampup from https://arxiv.org/abs/1610.02242"""
if rampup_length == 0:
return 1.0
else:
current = np.clip(current, 0.0, rampup_length)
phase = 1.0 - current / rampup_length
return float(np.exp(-5.0 * phase * phase))
def cosine_rampdown(current, rampdown_length):
"""Cosine rampdown from https://arxiv.org/abs/1608.03983"""
# assert 0 <= current <= rampdown_length
current = np.clip(current, 0.0, rampdown_length)
return float(.5 * (np.cos(np.pi * current / rampdown_length) + 1))
def rev_sigmoid(progress):
progress = np.clip(progress, 0, 1)
return float(1. / (1 + np.exp(10 * progress - 5)))
def sigmoid(progress):
progress = np.clip(progress, 0, 1)
return float(1. / (1 + np.exp(5 - 10 * progress)))
def get_max_preds_torch(batch_heatmaps):
batch_size = batch_heatmaps.size(0)
num_joints = batch_heatmaps.size(1)
width = batch_heatmaps.size(3)
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
idx = torch.argmax(heatmaps_reshaped, 2)
maxvals = torch.amax(heatmaps_reshaped, 2)
maxvals = maxvals.reshape((batch_size, num_joints, 1))
idx = idx.reshape((batch_size, num_joints, 1))
preds = idx.repeat(1, 1, 2).float()
preds[:, :, 0] = (preds[:, :, 0]) % width
preds[:, :, 1] = torch.floor((preds[:, :, 1]) / width)
pred_mask = (maxvals > 0.0).repeat(1, 1, 2)
pred_mask = pred_mask.float()
preds *= pred_mask
return preds, maxvals
def rectify(hm, sigma): # b, c, h, w -> b, c, h, w
b, c, h, w = hm.size()
rec_hm = torch.zeros_like(hm)
pred_coord, pred_val = get_max_preds_torch(hm) # b, c, 2
tmp_size = 3 * sigma
for b in range(rec_hm.size(0)):
for c in range(rec_hm.size(1)):
mu_x = pred_coord[b, c, 0]
mu_y = pred_coord[b, c, 1]
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if mu_x >= h or mu_y >= w or mu_x < 0 or mu_y < 0:
continue
# Generate gaussian
size = 2 * tmp_size + 1
x = torch.arange(0, size, 1).float()
y = x.unsqueeze(1)
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = torch.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], h) - ul[0]
g_y = max(0, -ul[1]), min(br[1], w) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], h)
img_y = max(0, ul[1]), min(br[1], w)
rec_hm[b][c][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return rec_hm
def generate_prior_map(prior, preds, gamma=2, sigma=2, epsilon=-10e10, v3=False): # prior: {mean: (k, k), std: (k, k)}, preds: (b, k, h, w) -> returns prior_map: (b, k, h, w)
# for the prediction in each channel, generate the estimation of the rest channels (assign a weight for each according to confidence and std?) with shape of (k, k, h, w)
# ensemble all the estimation and form a prior map, which should be a multiplier for the original prediction map.
prior_mean = prior['mean'].cuda()
prior_std = prior['std'].cuda()
B, K, H, W = preds.size()
pred_coord, pred_val = get_max_preds_torch(preds) # B, K, (1), 2 ; B, K, 1
pred_coord = pred_coord.view(B,K,1,2,1,1)
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,1,H,W).repeat(B,K,1,1,1)
yy = yy.view(1,1,1,H,W).repeat(B,K,1,1,1)
grid = torch.cat((xx,yy),2).float().cuda().view(B,1,K,2,H,W) # B, (1), K, 2, H, W
dist = torch.norm(grid - pred_coord, dim=3) # B, K, K, H, W
dist -= prior_mean.view(1,K,K,1,1) # B, K, K, H, W
targets = torch.exp(-(dist**2) / (2 * sigma ** 2)) # B, K, K, H, W
if v3:
var_table = (1 / (1 + prior_std)).view(1,K,K) # 1, K, K
conf_table = pred_val.view(B,K,1) # B, K, 1
final_weight = var_table * conf_table # B, K, K
# final_weight = F.softmax(final_weight, dim=1) # B, K, K, 1
targets = torch.sum(final_weight.view(B, K, K, 1, 1) * targets, dim=1)
else:
temp_std = -prior_std / gamma
temp_std.fill_diagonal_(epsilon)
weights = F.softmax(temp_std, dim=0) # K, K
targets = torch.sum(weights.view(1, K, K, 1, 1) * targets, dim=1)
return targets