-
Notifications
You must be signed in to change notification settings - Fork 1
/
CyclomaticComplexity_Using_GraphMatrix.java
239 lines (228 loc) · 8.96 KB
/
CyclomaticComplexity_Using_GraphMatrix.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package software_testing_meaures;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
*
* @author Guarav Shah
*/
class graph
{
graph[] adjacents = new graph[2]; // each node can have two outgoing branches out of it.
String type; // will store the line numbers which this node comprise
int start;
int end;
int index=0; // will represent the number of outgoing edges out of a node.
public String toString()
{
return " N"+this.index+" "+this.start+" "+this.end;
}
}
class CyclomaticComplexity_Using_GraphMatrix {
static ArrayList<graph> nodes;
static int number;
public static void print_Graph_Matrix()
{
graph node,left,right;
int graphMatrix[][] = new int[nodes.size()][nodes.size()],value[] = new int[nodes.size()],verticalSum=0;
System.out.println("\n");
System.out.println("******************** CONNECTION MATRIX ********************");
System.out.print(" ");
for(int i=0;i<nodes.size();i++)
{
System.out.print("N"+(i+1)+" ");
}
System.out.println();
for(int i=0;i<nodes.size();i++)
{
value[i]=0;
node = nodes.get(i);
// left link is not null
if(node.adjacents[0]!=null)
{
left = node.adjacents[0];
graphMatrix[i][left.index-1]++;
value[i]++;
}
if(node.adjacents[1]!=null)
{
right = node.adjacents[1];
graphMatrix[i][right.index-1]++;
value[i]++;
}
}
for(int i=0;i<nodes.size();i++)
{
System.out.print("N"+nodes.get(i).index+" ");
for(int j=0;j<nodes.size();j++)
{
System.out.print(graphMatrix[i][j]+" ");
}
if(value[i]!=0)
{
verticalSum+= value[i]-1;
System.out.print(value[i]+"-1="+(value[i]-1));
}
else
{
System.out.print(value[i]+"-0=0");
}
System.out.println();
}
System.out.println("\nCYCLOMATIC COMPLEXITY USING CONNECTION MATRIX "+verticalSum+"+1="+(verticalSum+1));
}
public static void print_Nodes_Lines()
{
graph node;
System.out.println("\n********* Mapping Flow Graph Node To DD Graph Nodes *********\n");
System.out.println("Program DD Path Adjacent Nodes");
System.out.println("Graph Graph Left Right");
System.out.println("Nodes Nodes Edge Edge");
System.out.println("----------------------------------");
for(int i=0;i<nodes.size();i++)
{
node = nodes.get(i);
System.out.printf("%2s-%2s %6s",node.start,node.end,"N"+node.index);
if(node.adjacents[0]!=null)
//System.out.print(" "+node.adjacents[0].toString()+" ");
System.out.printf("%10s","N"+node.adjacents[0].index);
if(node.adjacents[0]!=null && node.adjacents[1]!=null)
System.out.printf("%10s","N"+node.adjacents[1].index);
else if(node.adjacents[1]!=null)
System.out.print("Adjacent Nodes "+node.adjacents[1].toString()+" ");
System.out.println();
}
}
public static void main(String arfs[])
{
Scanner s = new Scanner(System.in);
String line,path;
// alternateNode will take care of statements which are part of one directional output of conditional statements.
boolean conditionFound=false,alternateNode=false,mergeNode=false;
StringBuffer sb = new StringBuffer();
Stack<Integer> scope = new Stack<Integer>(); // 1 means top element is opening bracket, 2 means closing bracket
Stack<graph> stack = new Stack<graph>();
nodes = new ArrayList<graph>();
int counter=0,lastConditionPoint=1; // lastConditionPoint will store the last time before a condition node
// Pattern definition section
Pattern decision = Pattern.compile("\\b(if|for|while|do)\\b(.*)"); // decision
// left node will store the node on left of conditional node, right node will store the node on right side of the conditional node.
graph node,last=null,left=null,right=null,temp=null; // last node will store the last condition node found in order to trace the path along two outgoing edges.
// Matcher definition section
Matcher dM,bM;
do
{
System.out.print("Enter file name : ");
path = "C:\\Users\\Suraj Singh\\Desktop\\"+s.next()+".txt";
System.out.println("\n\n******************** FILE CONTENT ********************");
try
{
BufferedReader r = new BufferedReader(new FileReader(path));
while( (line=r.readLine())!=null)
{
counter++;// store the line number in the sampled program.
dM = decision.matcher(line);
System.out.print(counter+" ");
System.out.println(line);
if(dM.find()) // We found a conditional node
{
// conditionFound = true;
node = new graph();
node.start=lastConditionPoint;
node.end = counter;// will store the starting and ending line numbers for which this node is defined.
lastConditionPoint = counter+1;
node.index = ++number;
if(stack.size()!=0) // nested conditional statements
{
temp = stack.peek();
temp.adjacents[0] = node; // set the left outgoing edge
}
// last = node; // last node is stored in order to set the pointers when scope of this condition ends
stack.push(node);
nodes.add(node);
conditionFound = true;
//nodes.add(new graph())
// Add code for this node
}
else if(line.contains("{") && conditionFound) // beginning of new block scope
{
conditionFound=false;
scope.add(1);
}
else if(line.contains("else"))
{
alternateNode = true;
}
else if(line.contains("}") && scope.size()!=0 && !alternateNode) // we found the complete block scope with open and closing brackets
{
//inside the scope we need to create one single graph node
node = new graph();
node.start = lastConditionPoint;
node.end = counter;
node.index = ++number;
last = stack.peek();
if(left!=null && right!=null)
left.adjacents[0] = right.adjacents[0] = node;
if(last.adjacents[0]==null)
last.adjacents[0] = node; // if condition is true then statements inside scope are executed and form the sibling of last node.
left = node;
nodes.add(node);
mergeNode = false;
lastConditionPoint = counter+1;
scope.pop();
}
else if(line.contains("}") && alternateNode) // take care of else part
{
node = new graph();
node.start = lastConditionPoint;
node.end = counter;
node.index = ++number;
nodes.add(node);
last = stack.pop();
right = node;
//last.adjacents[1] = new graph();
if(last.adjacents[1]==null)
last.adjacents[1] = node;
lastConditionPoint = counter+1;
alternateNode = false;
mergeNode = true;
last = null; // both left and right are set of the conditional node
}
} // end of while loop
// To handle the case when last statements are part of some condition statements
node = new graph();
node.start = lastConditionPoint;
node.end = counter;
node.index = ++number;
nodes.add(node);
if(!mergeNode) // alternateNode = true, both outgoing edges hasn't been taken care of
{
last.adjacents[1] = new graph();
last.adjacents[1] = node;
}
else // if alternateNode is present, then this is the merge node
{
// set the link of the nodes inside the conditional statements.
left.adjacents[0] = node;
right.adjacents[0] = node;
}
}
catch(Exception e)
{
e.printStackTrace();
System.out.println(e.toString());
}
}while(false); // run only once :)
print_Nodes_Lines();
print_Graph_Matrix();
}
}