diff --git a/test/Microsoft.ML.Functional.Tests/Training.cs b/test/Microsoft.ML.Functional.Tests/Training.cs index c1162e7978..954602d249 100644 --- a/test/Microsoft.ML.Functional.Tests/Training.cs +++ b/test/Microsoft.ML.Functional.Tests/Training.cs @@ -451,23 +451,12 @@ public void MetacomponentsFunctionAsExpectedOva() separatorChar: TestDatasets.iris.fileSeparator); // Create a model training an OVA trainer with a binary classifier. - var anomalyDetectionTrainer = mlContext.AnomalyDetection.Trainers.RandomizedPca(); - var anomalyDetectionPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) - .AppendCacheCheckpoint(mlContext) - .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(anomalyDetectionTrainer)) - .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); - - // Fit the binary classification pipeline. - Assert.Throws(() => anomalyDetectionPipeline.Fit(data)); - - // Create a model training an OVA trainer with a binary classifier. - var binaryclassificationTrainer = mlContext.BinaryClassification.Trainers.LogisticRegression( + var binaryClassificationTrainer = mlContext.BinaryClassification.Trainers.LogisticRegression( new LogisticRegressionBinaryClassificationTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, }); var binaryClassificationPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) .AppendCacheCheckpoint(mlContext) .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryclassificationTrainer)); + .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(binaryClassificationTrainer)); // Fit the binary classification pipeline. var binaryClassificationModel = binaryClassificationPipeline.Fit(data); @@ -477,53 +466,6 @@ public void MetacomponentsFunctionAsExpectedOva() // Evaluate the model. var binaryClassificationMetrics = mlContext.MulticlassClassification.Evaluate(binaryClassificationPredictions); - - // Create a model training an OVA trainer with a clustering trainer. - var kmeansTrainer = mlContext.Clustering.Trainers.KMeans( - new KMeansTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, }); - - Assert.Throws(() => - mlContext.Transforms.Concatenate("Features", Iris.Features) - .AppendCacheCheckpoint(mlContext) - .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(kmeansTrainer)) - .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"))); - - // Create a model training an OVA trainer with a multiclass classification trainer. - var multiclassTrainer = mlContext.MulticlassClassification.Trainers.LogisticRegression( - new LogisticRegressionMulticlassClassificationTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, }); - Assert.Throws(() => - mlContext.Transforms.Concatenate("Features", Iris.Features) - .AppendCacheCheckpoint(mlContext) - .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(multiclassTrainer)) - .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"))); - - // Create a model training an OVA trainer with a ranking trainer. - var rankingTrainer = mlContext.Ranking.Trainers.FastTree( - new FastTreeRankingTrainer.Options { NumberOfTrees = 2, NumberOfThreads = 1, }); - // Todo #2920: Make this fail somehow. - var rankingPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) - .AppendCacheCheckpoint(mlContext) - .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(rankingTrainer)) - .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); - - // Fit the invalid pipeline. - Assert.Throws(() => rankingPipeline.Fit(data)); - - // Create a model training an OVA trainer with a regressor. - var regressionTrainer = mlContext.Regression.Trainers.PoissonRegression( - new PoissonRegressionTrainer.Options { MaximumNumberOfIterations = 10, NumberOfThreads = 1, }); - // Todo #2920: Make this fail somehow. - var regressionPipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) - .AppendCacheCheckpoint(mlContext) - .Append(mlContext.Transforms.Conversion.MapValueToKey("Label")) - .Append(mlContext.MulticlassClassification.Trainers.OneVersusAll(regressionTrainer)) - .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); - - // Fit the invalid pipeline. - Assert.Throws(() => regressionPipeline.Fit(data)); } } } \ No newline at end of file