Skip to content

Commit f7043df

Browse files
authored
Merge pull request #2861 from shauheen/release/v11final
Update release for 0.11
2 parents 9c5c57b + 432089f commit f7043df

File tree

141 files changed

+264
-253
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

141 files changed

+264
-253
lines changed
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
# ML.NET 0.11 Release Notes
2+
3+
[ML.NET](https://aka.ms/mlnet) 0.11 will be the last preview release before we reach `Release Candidate` for v1. We continue to push for creating a coherent and clean API surface for [ML.NET](https://aka.ms/mlnet) users. This release includes several bug fixes as well as extensive work on reducing the public API surface. The work on the API is tracked via [this project](https://github.com/dotnet/machinelearning/projects/13). In the upcoming 0.12 (RC1) releases before we reach 1.0, we will continue on refining the API and improving documentation.
4+
5+
### Installation
6+
7+
ML.NET supports Windows, MacOS, and Linux. See [supported OS versions of .NET Core 2.0](https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md) for more details.
8+
9+
You can install ML.NET NuGet from the CLI using:
10+
```
11+
dotnet add package Microsoft.ML
12+
```
13+
14+
From package manager:
15+
```
16+
Install-Package Microsoft.ML
17+
```
18+
19+
### Release Notes
20+
21+
Below are a few of the highlights from this release. There are many other improvements in the API.
22+
23+
* Creation of components through MLContext: advanced options and other feedback. ([#1798](https://github.coalsom/dotnet/machinelearning/issues/1798))
24+
* Several issues closed on internalizing public surface. ([19 issues](https://github.com/dotnet/machinelearning/issues?q=is%3Aissue+lockdown+is%3Aclosed))
25+
* Stop using MEF as part of the public API. ([#2422](https://github.com/dotnet/machinelearning/issues/2422))
26+
* Several `NameSpace` changes. ([#2326](https://github.com/dotnet/machinelearning/issues/2326))
27+
* `ONNX` is now `ONNXConverter`. ([#2625](https://github.com/dotnet/machinelearning/pull/2625))
28+
* `ONNXTransform` is now `ONNXTransformer`. ([#2544](https://github.com/dotnet/machinelearning/pull/2544))
29+
* `FastTree` has it's own package now. ([#2752](https://github.com/dotnet/machinelearning/issues/2752))
30+
* `Ensemble` has been moved out of `Microsoft.ML` package. ([#2717](https://github.com/dotnet/machinelearning/issues/2717))
31+
* Add support for string types in TensorFlowTransformer. ([#2545](https://github.com/dotnet/machinelearning/issues/2545))
32+
* Make FastTree/LightGBM learned model suitable for public consumption. ([#1960](https://github.com/dotnet/machinelearning/issues/1960))
33+
34+
35+
### Acknowledgements
36+
37+
Shoutout to [PaulTFreedman](https://github.com/PaulTFreedman),
38+
[kant2002](https://github.com/kant2002),
39+
[jwood803](https://github.com/jwood803), [mareklinka](https://github.com/mareklinka), [elbruno](https://github.com/elbruno) and the [ML.NET](https://aka.ms/mlnet) team for their
40+
contributions as part of this release!

docs/samples/Microsoft.ML.Samples/Dynamic/KeyToValueValueToKey.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
using System;
22
using System.Collections.Generic;
33
using Microsoft.ML.Data;
4-
using Microsoft.ML.Transforms.Conversions;
4+
using Microsoft.ML.Transforms;
55

66
namespace Microsoft.ML.Samples.Dynamic
77
{

docs/samples/Microsoft.ML.Samples/Dynamic/Normalizer.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
using System.Collections.Generic;
33
using System.Linq;
44
using Microsoft.ML.Data;
5-
using Microsoft.ML.Transforms.Normalizers;
5+
using Microsoft.ML.Transforms;
66

77
namespace Microsoft.ML.Samples.Dynamic
88
{

docs/samples/Microsoft.ML.Samples/Dynamic/ProjectionTransforms.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ public static void Example()
5555
//0.165 0.117 -0.547 0.014
5656

5757
// A pipeline to project Features column into L-p normalized vector.
58-
var lpNormalizePipeline = ml.Transforms.Projection.LpNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), normKind: Transforms.Projections.LpNormalizingEstimatorBase.NormalizerKind.L1Norm);
58+
var lpNormalizePipeline = ml.Transforms.Projection.LpNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), normKind: Transforms.LpNormalizingEstimatorBase.NormalizerKind.L1Norm);
5959
// The transformed (projected) data.
6060
transformedData = lpNormalizePipeline.Fit(trainData).Transform(trainData);
6161
// Getting the data of the newly created column, so we can preview it.

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/AveragedPerceptronWithOptions.cs

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
1-
using Microsoft.ML;
2-
using Microsoft.ML.Trainers.Online;
1+
using Microsoft.ML.Trainers;
32

43
namespace Microsoft.ML.Samples.Dynamic.Trainers.BinaryClassification
54
{

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/FieldAwareFactorizationMachinewWithOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
using System;
22
using System.Linq;
33
using Microsoft.ML.Data;
4-
using Microsoft.ML.Trainers.FactorizationMachine;
4+
using Microsoft.ML.Trainers;
55

66
namespace Microsoft.ML.Samples.Dynamic
77
{

docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/LightGbm.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
using Microsoft.ML.Transforms.Categorical;
1+
using Microsoft.ML.Transforms;
22

33
namespace Microsoft.ML.Samples.Dynamic.Trainers.BinaryClassification
44
{
Lines changed: 55 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,55 @@
1+
using System;
2+
using Microsoft.ML.Data;
3+
4+
namespace Microsoft.ML.Samples.Dynamic
5+
{
6+
public static class ConvertType
7+
{
8+
private sealed class InputData
9+
{
10+
public bool Survived;
11+
}
12+
13+
private sealed class TransformedData
14+
{
15+
public bool Survived { get; set; }
16+
17+
public Int32 SurvivedInt32 { get; set; }
18+
}
19+
20+
public static void Example()
21+
{
22+
var mlContext = new MLContext(seed: 1, conc: 1);
23+
var rawData = new[] {
24+
new InputData() { Survived = true },
25+
new InputData() { Survived = false },
26+
new InputData() { Survived = true },
27+
new InputData() { Survived = false },
28+
new InputData() { Survived = false },
29+
};
30+
31+
var data = mlContext.Data.LoadFromEnumerable(rawData);
32+
33+
// Construct the pipeline.
34+
var pipeline = mlContext.Transforms.Conversion.ConvertType("SurvivedInt32", "Survived", DataKind.Int32);
35+
36+
// Let's train our pipeline, and then apply it to the same data.
37+
var transformer = pipeline.Fit(data);
38+
var transformedData = transformer.Transform(data);
39+
40+
// Display original column 'Survived' (boolean) and converted column 'SurvivedInt32' (Int32)
41+
var convertedData = mlContext.Data.CreateEnumerable<TransformedData>(transformedData, true);
42+
foreach (var item in convertedData)
43+
{
44+
Console.WriteLine("A:{0,-10} Aconv:{1}", item.Survived, item.SurvivedInt32);
45+
}
46+
47+
// Output
48+
// A: True Aconv:1
49+
// A: False Aconv:0
50+
// A: True Aconv:1
51+
// A: False Aconv:0
52+
// A: False Aconv:0
53+
}
54+
}
55+
}

docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/Projection/VectorWhiten.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ public static void Example()
4141

4242
// A pipeline to project Features column into white noise vector.
4343
var whiteningPipeline = ml.Transforms.Projection.VectorWhiten(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features),
44-
kind: Transforms.Projections.WhiteningKind.Zca);
44+
kind: Transforms.WhiteningKind.Zca);
4545
// The transformed (projected) data.
4646
var transformedData = whiteningPipeline.Fit(trainData).Transform(trainData);
4747
// Getting the data of the newly created column, so we can preview it.

docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/Projection/VectorWhitenWithColumnOptions.cs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,8 +39,8 @@ public static void Example()
3939

4040

4141
// A pipeline to project Features column into white noise vector.
42-
var whiteningPipeline = ml.Transforms.Projection.VectorWhiten(new Transforms.Projections.VectorWhiteningEstimator.ColumnOptions(
43-
nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), kind: Transforms.Projections.WhiteningKind.Pca, pcaNum: 4));
42+
var whiteningPipeline = ml.Transforms.Projection.VectorWhiten(new Transforms.VectorWhiteningEstimator.ColumnOptions(
43+
nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), kind: Transforms.WhiteningKind.Pca, pcaNum: 4));
4444
// The transformed (projected) data.
4545
var transformedData = whiteningPipeline.Fit(trainData).Transform(trainData);
4646
// Getting the data of the newly created column, so we can preview it.

0 commit comments

Comments
 (0)