forked from PatrikHlobil/Pandas-Bokeh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
91 lines (66 loc) · 3.25 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import setuptools
long_description = """# Pandas Bokeh
**Pandas Bokeh** provides a [Bokeh](https://bokeh.pydata.org/en/latest/) plotting backend for [Pandas](https://pandas.pydata.org/) and [GeoPandas](http://geopandas.org/), similar to the already existing [Visualization](https://pandas.pydata.org/pandas-docs/stable/visualization.html) feature of Pandas. Importing the library adds a complementary plotting method ***plot_bokeh()*** on **DataFrames** and **Series**. It also has native plotting backend support for Pandas >= 0.25.
For more information and examples have a look at the [Github Repository](https://github.com/PatrikHlobil/Pandas-Bokeh).
---
## Installation
You can install **Pandas Bokeh** from *PyPI* via **pip**:
pip install pandas-bokeh
or *conda*:
conda install -c patrikhlobil pandas-bokeh
**Pandas Bokeh** is officially supported on Python 3.5 and above.
---
## Description
With **Pandas Bokeh**, creating stunning, interactive, HTML-based visualization is as easy as calling:
```python
df.plot_bokeh()
```
In release **0.4**, the following plot types are supported:
* line
* step
* point
* scatter
* bar
* histogram
* area
* pie
* mapplot
<br>
Furthermore, also **GeoPandas** and **Pyspark** have a new plotting backend as can be seen in the provided [examples](https://github.com/PatrikHlobil/Pandas-Bokeh#geoplots).
<br>
**Pandas Bokeh** is a high-level API for **Bokeh** on top of **Pandas** and **GeoPandas** that tries to figure out best, what the user wants to plot. Nevertheless, there are many options for customizing the plots, for example:
* **figsize**: Choose width & height of the plot
* **title**: Sets title of the plot
* **xlim**/**ylim**: Set visible range of plot for x- and y-axis (also works for *datetime x-axis*)
* **xlabel**/**ylabel**: Set x- and y-labels
* **logx**/**logy**: Set log-scale on x-/y-axis
* **xticks**/**yticks**: Explicitly set the ticks on the axes
* **colormap**: Defines the colors to plot. Can be either a list of colors or the name of a [Bokeh color palette](https://bokeh.pydata.org/en/latest/docs/reference/palettes.html)
* **hovertool_string**: For customization of hovertool content
Each plot type like scatterplot or histogram further has many more additional customization options that is described [here](https://github.com/PatrikHlobil/Pandas-Bokeh).
"""
import pandas_bokeh
version = pandas_bokeh.__version__
setuptools.setup(
name="pandas-bokeh",
version=version,
author="Patrik Hlobil",
author_email="patrik.hlobil@googlemail.com",
description="Bokeh plotting backend for Pandas, GeoPandas & Pyspark",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/PatrikHlobil/Pandas-Bokeh",
packages=setuptools.find_packages(),
install_requires=["bokeh >=0.13", "pandas >=0.22.0"],
classifiers=[
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Visualization'
],
python_requires=">=3.5"
)