-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdlp.go
164 lines (140 loc) · 3.9 KB
/
dlp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
package dhpals
import (
"errors"
"fmt"
"math/big"
)
var Big0 = big.NewInt(0)
var Big1 = big.NewInt(1)
var Big2 = big.NewInt(2)
var Big3 = big.NewInt(3)
// crt finds a solution of the system on m equations using the Chinese Reminder Theorem.
//
// Let n_1, ..., n_m be pairwise coprime (gcd(n_i, n_j) = 1, for different i,j).
// Then the system of m equations:
// x_1 = a_1 mod n_1
// ...
// x_m = a_m mod n_m
// has a unique solution for x modulo N = n_1 ... n_m
func crt(a, n []*big.Int) (*big.Int, *big.Int, error) {
p := new(big.Int).Set(n[0])
for _, n1 := range n[1:] {
p.Mul(p, n1)
}
var x, q, s, z big.Int
for i, n1 := range n {
q.Div(p, n1)
z.GCD(nil, &s, n1, &q)
if z.Cmp(big.NewInt(1)) != 0 {
return nil, p, fmt.Errorf("%d not coprime", n1)
}
x.Add(&x, s.Mul(a[i], s.Mul(&s, &q)))
}
return x.Mod(&x, p), p, nil
}
// divides returns true if x divides y.
func divides(x, y *big.Int) bool {
return new(big.Int).Mod(y, x).Cmp(Big0) == 0
}
// phi computes Euler's totient function using a trivial straight-forward algorithm.
func phi(n *big.Int) *big.Int {
res := new(big.Int).Set(n)
m := new(big.Int).Sqrt(n)
m.Add(m, Big1)
cn := new(big.Int).Set(n)
for i := new(big.Int).Set(Big2); i.Cmp(m) < 0; i.Add(i, Big1) {
if divides(i, cn) {
//v := new(big.Int).Set(n)
for divides(i, cn) {
cn.Div(cn, i)
}
e := new(big.Int).Div(res, i)
res.Sub(res, e)
}
}
if cn.Cmp(Big1) > 0 {
e := new(big.Int).Div(res, cn)
res.Sub(res, e)
}
return res
}
// es implements exhaustive search to find a discrete logarithm:
// x such that g ^ x = y mod n.
func es(g, y, n *big.Int) *big.Int {
j := new(big.Int).SetInt64(0)
for ; j.Cmp(n) < 0; j.Add(j, Big1) {
if y.Cmp(new(big.Int).Exp(g, j, n)) == 0 {
break
}
}
return j
}
// bsgs implements the "baby-step giant-step" (Shenks-Gelfond) algorithm that
// finds x such that g ^ x = y mod n
func bsgs(g, y, p *big.Int) (*big.Int, error) {
if g.Cmp(Big0) == 0 {
return nil, errors.New("no solution in bsgs")
}
totient := phi(p)
m := new(big.Int).Sqrt(totient)
m.Add(m, Big1)
state := make(map[string]*big.Int)
for j := new(big.Int).Set(Big0); j.Cmp(m) < 0; j.Add(j, Big1) {
c := new(big.Int).Exp(g, j, p)
state[c.String()] = new(big.Int).Set(j)
}
g1 := new(big.Int).ModInverse(new(big.Int).Exp(g, m, p), p)
q := new(big.Int).Set(y)
for i := new(big.Int).Set(Big0); i.Cmp(m) < 0; i.Add(i, Big1) {
if j, ok := state[q.String()]; ok {
return m.Mul(m, i).Add(m, j).Mod(m, p), nil
}
q.Mul(q, g1)
q.Mod(q, p)
}
return nil, errors.New("a solution was not found by bsgs")
}
// basicPohligHellman implements the basic Pohlig-Hellman algorithm on groups of prime order.
func basicPohligHellman(g, y, n, p, pf, ef *big.Int) *big.Int {
gamma := new(big.Int).SetInt64(1)
l := new(big.Int).SetInt64(0)
q := new(big.Int).Set(pf)
a1 := new(big.Int).Exp(g, new(big.Int).Div(n, q), p)
x := new(big.Int).SetInt64(0)
for j := new(big.Int).Set(Big0); j.Cmp(ef) < 0; j.Add(j, Big1) {
aPower := new(big.Int).Mul(l, new(big.Int).Exp(q, new(big.Int).Sub(j, Big1), nil))
a := new(big.Int).Exp(g, aPower, p)
gamma.Mul(gamma, a)
gamma.Mod(gamma, p)
hh := new(big.Int).Exp(q, new(big.Int).Add(j, Big1), nil)
betaPower := new(big.Int).Div(n, hh)
beta := new(big.Int).ModInverse(gamma, p)
beta.Mul(beta, y)
beta.Exp(beta, betaPower, p)
l, _ = bsgs(a1, beta, p)
l.Mod(l, pf)
dx := new(big.Int).Exp(pf, j, nil)
dx.Mul(dx, l)
x.Add(x, dx)
}
hhh := x.Mod(x, n)
return hhh
}
// pohligHellman implements the general Pohlig-Hellman algorithm.
func pohligHellman(g, y, p *big.Int) *big.Int {
var N, A []*big.Int
n := phi(p)
factors := factorize(n)
for i := 0; i < len(factors); i++ {
pf := factors[i].fact
ef := new(big.Int).SetInt64(factors[i].exp)
xx := basicPohligHellman(g, y, n, p, pf, ef)
A = append(A, xx)
N = append(N, new(big.Int).Exp(pf, ef, nil))
}
x, _, err := crt(A, N)
if err != nil {
panic(err)
}
return x
}