-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·309 lines (261 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
import sys
import os
import glob
import time
import numpy as np
import torch
import torch.nn.functional as F
import scipy.sparse as sp
from scavenger import simple_nb_vae
from argparse import ArgumentParser as AP
ap = AP()
ap.add_argument("--hidden", default="256,64,32")
ap.add_argument("--latent-dim", type=int, default=16)
ap.add_argument("--no-full-cov", action='store_true')
ap.add_argument("--zero-inflate", action='store_true')
ap.add_argument("--epochs", type=int, default=5)
ap.add_argument("--seed", type=int, default=3)
ap.add_argument("--batch-size", type=int, default=128)
ap.add_argument("--lr", type=float, default=1e-3)
ap.add_argument("--subsample-rows", type=float, default=1.)
ap.add_argument("--add-log1p-l2-recon-loss", action='store_true')
ap.add_argument("--compile", action='store_true')
ap.add_argument("--gradientfreq", '-G', type=int, help="Number of batches between calling backward.", default=1)
ap.add_argument("--class-loss-ratio", type=float, default=0.)
ap.add_argument("--save-epoch-models", action='store_true')
ap.add_argument("--scale-recon-by-variance", action='store_true')
ap.add_argument("--outdir")
ap.add_argument("--compute-class-loss-always", "-C", action='store_true')
args = ap.parse_args()
args.full_cov = not args.no_full_cov
if not args.outdir:
import string
args.outdir = "".join(np.random.choice(list(string.ascii_lowercase), size=(10,)))
print(args.outdir, "is out dir", file=sys.stderr)
args.outdir = args.outdir + "/"
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
covstr = "full_cov" if args.full_cov else "diag_cov"
zi = ".zi" if args.zero_inflate else ""
settings = args
args = ap.parse_args()
args.full_cov = not args.no_full_cov
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
covstr = "full_cov" if args.full_cov else "diag_cov"
zi = ".zi" if args.zero_inflate else ""
settings = args
hidden = list(map(int, args.hidden.split(',')))
start_time = time.time()
print(f"Starting with args {args} at time {start_time}", file=sys.stderr)
torch.manual_seed(args.seed)
base = "/Users/dnb13/Desktop/code/compressed_bundle/PBMC"
labels = np.memmap(base + "/labels.u8.npy", np.uint8)
num_labels = len(set(labels))
labels = torch.from_numpy(labels).long()
assert num_labels == 11, f"{len(set(labels))}"
mat = sp.csr_matrix((np.memmap(base + "/pbmc.data.u16.npy", np.uint16), np.memmap(base + "/pbmc.indices.u16.npy", np.uint16), np.memmap(base + "/pbmc.indptr.u32.npy", np.uint32)), shape=np.fromfile(base + "/pbmc.shape.u32.npy", np.uint32))
'''
data = np.load("/Users/dnb13/Desktop/code/compressed_bundle/PBMC/pbmc.csr.npz")
mat = sp.csr_matrix((data['data'], data['indices'],
data['indptr']), shape=data['shape'])
'''
if args.subsample_rows < 1.:
mat = mat[torch.rand(mat.shape[0]) < args.subsample_rows]
print(f"Mat of shape {mat.shape}", file=sys.stderr)
indices = np.arange(mat.shape[0])
rand_vals = torch.rand([mat.shape[0]])
train_vals = torch.where(rand_vals > .2)[0]
test_vals = torch.where(torch.logical_and(rand_vals > .1, rand_vals <= 0.2))[0]
validation_vals = torch.where(rand_vals < .1)[0]
latent_dim = args.latent_dim
hidden_dims = hidden
os.makedirs(args.outdir, exist_ok=True)
num_genes = mat.shape[1]
outfile = np.memmap(args.outdir + f"/latent.npy.f32", dtype=np.float32, shape=(mat.shape[0], latent_dim), mode='w+')
compute_class_loss = args.class_loss_ratio > 0. or args.compute_class_loss_always
model = simple_nb_vae.NBVAE(data_dim=mat.shape[1], latent_dim=latent_dim,
hidden_dim=hidden_dims, full_cov=args.full_cov, zero_inflate=args.zero_inflate,
categorical_class_sizes=[num_labels] if compute_class_loss else [])
recon_loss_weights = None
if args.scale_recon_by_variance:
feature_means = np.asarray(mat.mean(axis=0)).reshape(-1)
def row_to_var(row):
row = np.asarray(row.todense()).reshape(-1)
tmp = row - feature_means
tmp *= tmp
return tmp
varsum = row_to_var(mat[0])
for row in mat[1:]:
varsum += row_to_var(row)
feature_variances = varsum / mat.shape[0]
scaled_variances = torch.from_numpy(feature_variances / (feature_means + 1e-4))
if recon_loss_weights is None:
recon_loss_weights = torch.ones_like(scaled_variances)
recon_loss_weights *= scaled_variances
print(recon_loss_weights.median(), "as mean reconstruction loss weights")
f16 = None
if args.compile:
f16 = torch.from_numpy(mat[:37, :].todense().astype(np.float32))
''''
if compute_class_loss:
label16 = torch.nn.functional.one_hot(labels[:37], num_classes=num_labels)
f16 = torch.cat([f16, label16], axis=1)
'''
module = torch.jit.trace(model, f16, check_trace=1)
traced_module = module
import datetime
s = str(datetime.datetime.now()).replace(" ", "_")
traced_module.save(f"__tracedmodule.{s}.pytorch_jit.pt")
module = torch.compile(model, fullgraph=True)
#module.save(f"__tracedmodule.{s}.pytorch_opt.pt")
# torch.save(module, f"__tracedmodule.{s}.pytorch_opt.pt"
#torch.manual_seed(0)
#out_compile = module(f16)
#assert torch.allclose(out_orig, out_compile)
'''
out = model(f16)
# print("out:", out.shape)
unpacked_out = model.unpack(out)
latent, losses, zinb = unpacked_out
labeled_unpack = model.labeled_unpack(unpacked_out)
'''
num_train = len(train_vals)
num_test = len(test_vals)
num_batches = (num_train + args.batch_size - 1) // args.batch_size
model.eval()
opt = torch.optim.Adam(model.parameters(), lr=args.lr)
for epoch_id in range(args.epochs):
print(f"{epoch_id}/{args.epochs}", file=sys.stderr)
randperm = torch.randperm(num_train)
model.train()
backprop_count = 0
opt.zero_grad()
for batch_id in range(num_batches):
start = batch_id * args.batch_size
end = start + args.batch_size
idxtouse = randperm[start:end]
#print("idxtouse", idxtouse.dtype, idxtouse.shape)
#print("train_vals:", train_vals)
idxtouse = train_vals[idxtouse]
submatrix = torch.from_numpy(mat[idxtouse].todense().astype(np.float32))
label_arg = [labels[idxtouse]] if compute_class_loss else []
# print("label arg: ", label_arg, file=sys.stdout)
res = model(submatrix, label_arg)
unpacked_out = model.unpack(res)
latent, losses, zinb, class_info = unpacked_out
latent_repr, sampled_repr, nb_model, logvar, full_cov = latent
# print(latent.shape, latent)
outfile[idxtouse,:] = latent_repr.detach()
if class_info is not None:
class_logits, class_loss = class_info
else:
class_loss = class_logits = None
model_loss, recon_loss = losses[:2]
# print(recon_loss.shape, recon_loss.shape, "are the loss, weight shapes")
if recon_loss_weights is not None:
recon_loss = recon_loss[...,:num_genes] * recon_loss_weights
assert class_loss is None or (len(losses) > 2 and losses[2] is not None)
# print(f"loss sizes: elbo {model_loss.size()}, recon {recon_loss.size()}", file=sys.stderr)
loss = model_loss.sum(axis=1) + recon_loss.sum(axis=1)
if class_loss is not None and args.class_loss_ratio > 0.:
loss += class_loss.sum(axis=1) * args.class_loss_ratio
if args.add_log1p_l2_recon_loss:
sampled = zinb.sample()
lsampled = torch.log1p(sampled)
source = torch.log1p(submatrix)
loss += (lsampled - source).square().sum(axis=1)
backprop_count += 1
if backprop_count == args.gradientfreq:
loss.sum().backward()
opt.step()
backprop_count = 0
opt.zero_grad()
print(f"{batch_id}/{num_batches} at {epoch_id} has mean loss {loss.mean().item()}", file=sys.stderr)
if backprop_count > 0:
loss.sum().backward()
opt.step()
backprop_count = 0
opt.zero_grad()
print(f"{batch_id}/{num_batches} at {epoch_id} has mean loss {loss.mean().item()}", file=sys.stderr)
# Now check test acc
model.eval()
num_test_batches = (len(test_vals) +
args.batch_size - 1) // args.batch_size
model_test_loss = None
recon_test_loss = None
class_test_loss = None
for batch_id in range(num_test_batches):
randperm = torch.randperm(num_test)
start = batch_id * args.batch_size
end = start + args.batch_size
idxtouse = randperm[start:end]
submatrix = torch.from_numpy(mat[idxtouse, :].todense().astype(np.float32))
label_arg = [labels[idxtouse]] if compute_class_loss else []
latent, losses, zinb, class_info = model.unpack(model(submatrix, label_arg))
latent_repr, sampled_repr, nb_model, logvar, full_cov = latent
outfile[idxtouse,:] = latent_repr.detach()
if class_info is not None:
class_logits, class_loss = class_info
else:
class_loss = class_logits = None
model_loss, recon_loss = losses[:2]
if model_test_loss is None:
model_test_loss = model_loss.sum(0)
recon_test_loss = recon_loss.sum(0)
#print(f"init model_loss shape: {model_loss.shape}")
#print(f"init model_test_loss shape: {model_test_loss.shape}")
#print(f"init recon_loss shape: {recon_loss.shape}")
if class_loss is not None:
class_test_loss = class_loss.sum(0)
continue
if recon_loss_weights is not None:
recon_loss = recon_loss[...,:num_genes] * recon_loss_weights
#print(f"model_loss shape: {model_loss.shape}")
#print(f"recon_loss shape: {recon_loss.shape}")
#print(f"model_test_loss shape: {model_test_loss.shape}")
recon_test_loss += recon_loss.sum(0)
model_test_loss += model_loss.sum(0)
if class_loss is not None:
class_test_loss += class_loss.sum(0)
print(f"[After epoch {epoch_id + 1} - Mean test loss: {model_test_loss.mean().item()} for model fit, {recon_test_loss.mean().item()} for reconstruction.", file=sys.stderr)
if class_test_loss is not None:
print(f"[After epoch {epoch_id + 1} - Mean class test loss: {class_test_loss.mean().item()}", file=sys.stderr)
torch.save(
model, f"{args.outdir}/nbvae.{latent_dim}.{hidden_dims}.{covstr}.{epoch_id}of{args.epochs}{zi}.pt")
model.eval()
if f16 is None:
f16 = torch.from_numpy(mat[:37, :].todense().astype(np.float32))
module = torch.jit.trace(model, f16, check_trace=False)
traced_module = module
orig_module = model
torch.manual_seed(0)
out_jit = module(f16)
torch.manual_seed(0)
out_orig = orig_module(f16)
assert torch.allclose(out_orig, out_jit)
hidden_dim = ",".join(map(str, hidden_dims))
covstr = "full_cov" if args.full_cov else "diag_cov"
zi = ".zi" if args.zero_inflate else ""
module.save(
f"{args.outdir}/nbvae.{latent_dim}.{hidden_dim}.{covstr}.{args.epochs}.{zi}jit.pt")
torch.save(
model, f"{args.outdir}/nbvae.{latent_dim}.{hidden_dim}.{covstr}.{args.epochs}{zi}.pt")
if not args.save_epoch_models:
set(map(os.remove, glob.iglob(f"{args.outdir}/nbvae.{latent_dim}.{hidden_dim}.{covstr}.*of{args.epochs}{zi}.pt")))
print(
f"Finished with args {args} at time {time.time()} (after {time.time() - start_time})", file=sys.stderr)
# Now try to compile
if args.compile:
print("Try jit script")
try:
module = torch.jit.compile(model)
torch.manual_seed(0)
out_compile = module(f16)
assert torch.allclose(out_orig, out_compile)
except:
pass
print("Try torch.compile")
module = torch.compile(model)
torch.manual_seed(0)
out_compile = module(f16)
assert torch.allclose(out_orig, out_compile)