-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainingClass.py
101 lines (83 loc) · 3.73 KB
/
trainingClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import nltk
import itertools
import sys
import random
import pickle
class Classifier(object):
"""classify by looking at a site"""
def __init__(self, training_set):
self.training_set = training_set
self.stopwords = nltk.corpus.stopwords.words("english")
self.stemmer = nltk.PorterStemmer()
self.minlength = 7
self.maxlength = 25
def text_process_entry(self, example):
site_text = nltk.clean_html(example[0]).lower()
original_tokens = itertools.chain.from_iterable(nltk.word_tokenize(w) for w in nltk.sent_tokenize(site_text))
tokens = original_tokens #+ [' '.join(w) for w in nltk.util.ngrams(original_tokens, 2)]
tokens = [w for w in tokens if not w in self.stopwords]
tokens = [w for w in tokens if self.minlength < len(w) < self.maxlength]
#tokens = [self.stemmer.stem(w) for w in tokens]
return (tokens, example[1])
def text_process_all(self, exampleset):
processed_training_set = [self.text_process_entry(i) for i in self.training_set]
processed_training_set = filter(lambda x: len(x[0]) > 0, processed_training_set) # remove empty crawls
processed_texts = [i[0] for i in processed_training_set]
all_words = nltk.FreqDist(itertools.chain.from_iterable(processed_texts))
features_to_test = all_words.keys()[:5000]
self.features_to_test = features_to_test
featuresets = [(self.document_features(d), c) for (d,c) in processed_training_set]
return featuresets
def document_features(self, document):
#document_words = set(document)
features = {}
for word in self.features_to_test:
#features['contains(%s)' % word] = (word in document_words)
features['contains(%s)' % word] = (word in document)
#features['occurrencies(%s)' % word] = document.count(word)
#features['atleast3(%s)' % word] = document.count(word) > 3
return features
def build_classifier(self, featuresets):
random.shuffle(featuresets)
cut_point = len(featuresets) / 5
train_set, test_set = featuresets[cut_point:], featuresets[:cut_point]
classifier = nltk.NaiveBayesClassifier.train(train_set)
return (classifier, test_set)
def run(self):
featuresets = self.text_process_all(self.training_set)
classifier, test_set = self.build_classifier(featuresets)
self.classifier = classifier
self.test_classifier(classifier, test_set)
def classify(self, text):
return self.classifier.classify(self.document_features(text))
def test_classifier(self, classifier, test_set):
print nltk.classify.accuracy(classifier, test_set)
classifier.show_most_informative_features(45)
infile = open('training1_feb12.txt', 'r')
pol = pickle.load(infile)
infile.close()
infile2 = open('training2_feb12.txt', 'r')
rel = pickle.load(infile2)
infile2.close()
infile3 = open('training3_feb12.txt', 'r')
sports = pickle.load(infile3)
infile3.close()
classes = ('politics','relationship','sports')
list1= [(elem,classes[0]) for elem in pol]
list2= [(elem,classes[1]) for elem in rel]
list3= [(elem,classes[2]) for elem in sports]
training_set=[]
training_set.extend(list1)
training_set.extend(list2)
training_set.extend(list3)
# trivial test
test_text = "we love state politics"
test_text2 = "we will celebrate one year marriage"
if __name__ == '__main__':
classifier = Classifier(training_set)
classifier.run()
print "%s -> classified as: %s" % (test_text, classifier.classify(test_text))
print "%s -> classified as: %s" % (test_text2, classifier.classify(test_text2))
outfile = open('classifier_feb12.txt', 'w')
pickle.dump(classifier, outfile)
outfile.close()