-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathposeutils.c
715 lines (633 loc) · 30.7 KB
/
poseutils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// Apparently I need this in MSVC to get constants
#define _USE_MATH_DEFINES
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "poseutils.h"
#include "strides.h"
// All arrays stored in row-major order
//
// I have two different representations of pose transformations:
//
// - Rt is a concatenated (4,3) array: Rt = nps.glue(R,t, axis=-2). The
// transformation is R*x+t
//
// - rt is a concatenated (6) array: rt = nps.glue(r,t, axis=-1). The
// transformation is R*x+t where R = R_from_r(r)
// row vectors: vout = matmult(v,Mt)
// equivalent col vector expression: vout = matmult(M,v)
#define mul_vec3_gen33t_vout_scaled_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1, \
scale) \
do { \
/* needed for in-place operations */ \
double outcopy[3] = { \
scale * \
(_P2(Mt,Mt_stride0,Mt_stride1,0,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,0,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,0,2)*_P1(v,v_stride0,2) ), \
scale * \
(_P2(Mt,Mt_stride0,Mt_stride1,1,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,1,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,1,2)*_P1(v,v_stride0,2) ), \
scale * \
(_P2(Mt,Mt_stride0,Mt_stride1,2,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,2,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,2,2)*_P1(v,v_stride0,2) ) }; \
_P1(vout,vout_stride0,0) = outcopy[0]; \
_P1(vout,vout_stride0,1) = outcopy[1]; \
_P1(vout,vout_stride0,2) = outcopy[2]; \
} while(0)
#define mul_vec3_gen33t_vout_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1) \
mul_vec3_gen33t_vout_scaled_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1, 1.0)
// row vectors: vout = scale*matmult(v,M)
#define mul_vec3_gen33_vout_scaled_full(vout, vout_stride0, \
v, v_stride0, \
M, M_stride0, M_stride1, \
scale) \
do { \
/* needed for in-place operations */ \
double outcopy[3] = { \
scale * \
(_P2(M,M_stride0,M_stride1,0,0)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,0)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,0)*_P1(v,v_stride0,2)), \
scale * \
(_P2(M,M_stride0,M_stride1,0,1)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,1)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,1)*_P1(v,v_stride0,2)), \
scale * \
(_P2(M,M_stride0,M_stride1,0,2)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,2)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,2)*_P1(v,v_stride0,2)) }; \
_P1(vout,vout_stride0,0) = outcopy[0]; \
_P1(vout,vout_stride0,1) = outcopy[1]; \
_P1(vout,vout_stride0,2) = outcopy[2]; \
} while(0)
#define mul_vec3_gen33_vout_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1) \
mul_vec3_gen33_vout_scaled_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1, 1.0)
// row vectors: vout = matmult(v,Mt)
// equivalent col vector expression: vout = matmult(M,v)
#define mul_vec3_gen33t_vaccum_full(vout, vout_stride0, \
v, v_stride0, \
Mt, Mt_stride0, Mt_stride1) \
do { \
/* needed for in-place operations */ \
double outcopy[3] = { \
_P1(vout,vout_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,0,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,0,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,0,2)*_P1(v,v_stride0,2), \
_P1(vout,vout_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,1,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,1,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,1,2)*_P1(v,v_stride0,2), \
_P1(vout,vout_stride0,2) + \
_P2(Mt,Mt_stride0,Mt_stride1,2,0)*_P1(v,v_stride0,0) + \
_P2(Mt,Mt_stride0,Mt_stride1,2,1)*_P1(v,v_stride0,1) + \
_P2(Mt,Mt_stride0,Mt_stride1,2,2)*_P1(v,v_stride0,2) }; \
_P1(vout,vout_stride0,0) = outcopy[0]; \
_P1(vout,vout_stride0,1) = outcopy[1]; \
_P1(vout,vout_stride0,2) = outcopy[2]; \
} while(0)
// row vectors: vout = scale*matmult(v,M)
#define mul_vec3_gen33_vaccum_scaled_full(vout, vout_stride0, \
v, v_stride0, \
M, M_stride0, M_stride1, \
scale) \
do { \
/* needed for in-place operations */ \
double outcopy[3] = { \
_P1(vout,vout_stride0,0) + scale * \
(_P2(M,M_stride0,M_stride1,0,0)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,0)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,0)*_P1(v,v_stride0,2)), \
_P1(vout,vout_stride0,1) + scale * \
(_P2(M,M_stride0,M_stride1,0,1)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,1)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,1)*_P1(v,v_stride0,2)), \
_P1(vout,vout_stride0,2) + scale * \
(_P2(M,M_stride0,M_stride1,0,2)*_P1(v,v_stride0,0) + \
_P2(M,M_stride0,M_stride1,1,2)*_P1(v,v_stride0,1) + \
_P2(M,M_stride0,M_stride1,2,2)*_P1(v,v_stride0,2)) }; \
_P1(vout,vout_stride0,0) = outcopy[0]; \
_P1(vout,vout_stride0,1) = outcopy[1]; \
_P1(vout,vout_stride0,2) = outcopy[2]; \
} while(0)
// multiply two (3,3) matrices
static inline
void mul_gen33_gen33_vout_full(// output
double* m0m1,
int m0m1_stride0, int m0m1_stride1,
// input
const double* m0,
int m0_stride0, int m0_stride1,
const double* m1,
int m1_stride0, int m1_stride1)
{
/* needed for in-place operations */
double outcopy2[9];
for(int i=0; i<3; i++)
// one row at a time
mul_vec3_gen33_vout_scaled_full(&outcopy2[i*3], sizeof(outcopy2[0]),
&_P2(m0 , m0_stride0, m0_stride1, i,0), m0_stride1,
m1, m1_stride0, m1_stride1,
1.0);
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P2(m0m1, i,j) = outcopy2[3*i+j];
}
static inline
double inner3(const double* restrict a,
const double* restrict b)
{
double s = 0.0;
for (int i=0; i<3; i++) s += a[i]*b[i];
return s;
}
// Make an identity rotation or transformation
void mrcal_identity_R_full(double* R, // (3,3) array
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(R, 3,3);
P2(R, 0,0) = 1.0; P2(R, 0,1) = 0.0; P2(R, 0,2) = 0.0;
P2(R, 1,0) = 0.0; P2(R, 1,1) = 1.0; P2(R, 1,2) = 0.0;
P2(R, 2,0) = 0.0; P2(R, 2,1) = 0.0; P2(R, 2,2) = 1.0;
}
void mrcal_identity_r_full(double* r, // (3,) array
int r_stride0 // in bytes. <= 0 means "contiguous"
)
{
init_stride_1D(r, 3);
P1(r, 0) = 0.0; P1(r, 1) = 0.0; P1(r, 2) = 0.0;
}
void mrcal_identity_Rt_full(double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(Rt, 4,3);
mrcal_identity_R_full(Rt, Rt_stride0, Rt_stride1);
for(int i=0; i<3; i++) P2(Rt, 3, i) = 0.0;
}
void mrcal_identity_rt_full(double* rt, // (6,) array
int rt_stride0 // in bytes. <= 0 means "contiguous"
)
{
init_stride_1D(rt, 6);
mrcal_identity_r_full(rt, rt_stride0);
for(int i=0; i<3; i++) P1(rt, i+3) = 0.0;
}
void mrcal_rotate_point_R_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_R, // (3,3,3) array. May be NULL
int J_R_stride0, // in bytes. <= 0 means "contiguous"
int J_R_stride1, // in bytes. <= 0 means "contiguous"
int J_R_stride2, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* R, // (3,3) array. May be NULL
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply a
// rotation in the opposite
// direction. J_R corresponds
// to the input R
)
{
init_stride_1D(x_out, 3);
init_stride_3D(J_R, 3,3,3 );
init_stride_2D(J_x, 3,3 );
init_stride_2D(R, 3,3 );
init_stride_1D(x_in, 3 );
if(inverted)
{
// transpose R
int tmp;
tmp = R_stride0;
R_stride0 = R_stride1;
R_stride1 = tmp;
tmp = J_R_stride1;
J_R_stride1 = J_R_stride2;
J_R_stride2 = tmp;
}
if(J_R)
{
// out[i] = inner(R[i,:],in)
for(int i=0; i<3; i++)
{
int j=0;
for(; j<i; j++)
for(int k=0; k<3; k++)
P3(J_R, i,j,k) = 0.0;
for(int k=0; k<3; k++)
P3(J_R, i,j,k) = P1(x_in, k);
for(j++; j<3; j++)
for(int k=0; k<3; k++)
P3(J_R, i,j,k) = 0.0;
}
}
if(J_x)
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P2(J_x, i,j) = P2(R, i,j);
// R*x
mul_vec3_gen33t_vout_full(x_out, x_out_stride0,
x_in, x_in_stride0,
R, R_stride0, R_stride1);
}
// mrcal_rotate_point_r() uses auto-differentiation, so it's implemented in C++
// in poseutils-uses-autodiff.cc
// Apply a transformation to a point
void mrcal_transform_point_Rt_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_Rt, // (3,4,3) array. May be NULL
int J_Rt_stride0, // in bytes. <= 0 means "contiguous"
int J_Rt_stride1, // in bytes. <= 0 means "contiguous"
int J_Rt_stride2, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt, // (4,3) array. May be NULL
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply a
// transformation in the opposite
// direction. J_Rt corresponds
// to the input Rt
)
{
init_stride_1D(x_out, 3);
init_stride_3D(J_Rt, 3,4,3 );
// init_stride_2D(J_x, 3,3 );
init_stride_2D(Rt, 4,3 );
// init_stride_1D(x_in, 3 );
if(!inverted)
{
// for in-place operation
double t[] = { P2(Rt,3,0), P2(Rt,3,1), P2(Rt,3,2) };
// I want R*x + t
// First R*x
mrcal_rotate_point_R_full(x_out, x_out_stride0,
J_Rt, J_Rt_stride0, J_Rt_stride1, J_Rt_stride2,
J_x, J_x_stride0, J_x_stride1,
Rt, Rt_stride0, Rt_stride1,
x_in, x_in_stride0,
false);
// And now +t. The J_R, J_x gradients are unaffected. J_t is identity
for(int i=0; i<3; i++)
P1(x_out,i) += t[i];
if(J_Rt)
mrcal_identity_R_full(&P3(J_Rt,0,3,0), J_Rt_stride0, J_Rt_stride2);
}
else
{
// inverted operation means
// y = transpose(R) (x - t)
double x_minus_t[] = { P1(x_in,0) - P2(Rt,3,0),
P1(x_in,1) - P2(Rt,3,1),
P1(x_in,2) - P2(Rt,3,2)};
// Compute. After this:
// x_out is done
// J_R is done
// J_x is done
mrcal_rotate_point_R_full(x_out, x_out_stride0,
J_Rt, J_Rt_stride0, J_Rt_stride1, J_Rt_stride2,
J_x, J_x_stride0, J_x_stride1,
Rt, Rt_stride0, Rt_stride1,
x_minus_t, sizeof(double),
true);
// I want J_t = -transpose(R)
if(J_Rt)
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P3(J_Rt, i, 3, j) = -P2(Rt, j, i);
}
}
// Invert a rotation matrix. This is a transpose
//
// The input is given in R_in in a (3,3) array
//
// The result is returned in a (3,3) array R_out. In-place operation is
// supported
void mrcal_invert_R_full( // output
double* R_out, // (3,3) array
int R_out_stride0, // in bytes. <= 0 means "contiguous"
int R_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* R_in, // (3,3) array
int R_in_stride0, // in bytes. <= 0 means "contiguous"
int R_in_stride1 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(R_out, 3,3);
init_stride_2D(R_in, 3,3);
// transpose(R). Extra stuff to make in-place operations work
for(int i=0; i<3; i++)
P2(R_out,i,i) = P2(R_in,i,i);
for(int i=0; i<3; i++)
for(int j=i+1; j<3; j++)
{
double tmp = P2(R_in,i,j);
P2(R_out,i,j) = P2(R_in,j,i);
P2(R_out,j,i) = tmp;
}
}
// Convert a transformation representation from Rt to rt. This is mostly a
// convenience functions since 99% of the work is done by mrcal_r_from_R().
void mrcal_rt_from_Rt_full(// output
double* rt, // (6,) vector
int rt_stride0, // in bytes. <= 0 means "contiguous"
double* J_R, // (3,3,3) array. Gradient. May be NULL
// No J_t. It's always the identity
int J_R_stride0, // in bytes. <= 0 means "contiguous"
int J_R_stride1, // in bytes. <= 0 means "contiguous"
int J_R_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1 // in bytes. <= 0 means "contiguous"
)
{
mrcal_r_from_R_full(rt, rt_stride0,
J_R, J_R_stride0, J_R_stride1, J_R_stride2,
Rt, Rt_stride0, Rt_stride1);
init_stride_1D(rt, 6);
// init_stride_3D(J_R, 3,3,3);
init_stride_2D(Rt, 4,3);
for(int i=0; i<3; i++)
P1(rt, i+3) = P2(Rt,3,i);
}
// Convert a transformation representation from Rt to rt. This is mostly a
// convenience functions since 99% of the work is done by mrcal_R_from_r().
void mrcal_Rt_from_rt_full(// output
double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1, // in bytes. <= 0 means "contiguous"
double* J_r, // (3,3,3) array. Gradient. May be NULL
// No J_t. It's just the identity
int J_r_stride0, // in bytes. <= 0 means "contiguous"
int J_r_stride1, // in bytes. <= 0 means "contiguous"
int J_r_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* rt, // (6,) vector
int rt_stride0 // in bytes. <= 0 means "contiguous"
)
{
mrcal_R_from_r_full(Rt, Rt_stride0, Rt_stride1,
J_r, J_r_stride0, J_r_stride1, J_r_stride2,
rt, rt_stride0);
init_stride_1D(rt, 6);
// init_stride_3D(J_r, 3,3,3);
init_stride_2D(Rt, 4,3);
for(int i=0; i<3; i++)
P2(Rt,3,i) = P1(rt,i+3);
}
// Invert an Rt transformation
//
// b = Ra + t -> a = R'b - R't
void mrcal_invert_Rt_full( // output
double* Rt_out, // (4,3) array
int Rt_out_stride0, // in bytes. <= 0 means "contiguous"
int Rt_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt_in, // (4,3) array
int Rt_in_stride0, // in bytes. <= 0 means "contiguous"
int Rt_in_stride1 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(Rt_out, 4,3);
init_stride_2D(Rt_in, 4,3);
// transpose(R). Extra stuff to make in-place operations work
for(int i=0; i<3; i++)
P2(Rt_out,i,i) = P2(Rt_in,i,i);
for(int i=0; i<3; i++)
for(int j=i+1; j<3; j++)
{
double tmp = P2(Rt_in,i,j);
P2(Rt_out,i,j) = P2(Rt_in,j,i);
P2(Rt_out,j,i) = tmp;
}
// -transpose(R)*t
mul_vec3_gen33t_vout_scaled_full(&P2(Rt_out,3,0), Rt_out_stride1,
&P2(Rt_in, 3,0), Rt_in_stride1,
Rt_out, Rt_out_stride0, Rt_out_stride1,
-1.0);
}
// Invert an rt transformation
//
// b = rotate(a) + t -> a = invrotate(b) - invrotate(t)
//
// drout_drin is not returned: it is always -I
// drout_dtin is not returned: it is always 0
void mrcal_invert_rt_full( // output
double* rt_out, // (6,) array
int rt_out_stride0, // in bytes. <= 0 means "contiguous"
double* dtout_drin, // (3,3) array
int dtout_drin_stride0, // in bytes. <= 0 means "contiguous"
int dtout_drin_stride1, // in bytes. <= 0 means "contiguous"
double* dtout_dtin, // (3,3) array
int dtout_dtin_stride0, // in bytes. <= 0 means "contiguous"
int dtout_dtin_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* rt_in, // (6,) array
int rt_in_stride0 // in bytes. <= 0 means "contiguous"
)
{
init_stride_1D(rt_out, 6);
// init_stride_2D(dtout_drin, 3,3);
init_stride_2D(dtout_dtin, 3,3);
init_stride_1D(rt_in, 6);
// r uses an angle-axis representation, so to undo a rotation r, I can apply
// a rotation -r (same axis, equal and opposite angle)
for(int i=0; i<3; i++)
P1(rt_out,i) = -P1(rt_in,i);
mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
dtout_drin, dtout_drin_stride0, dtout_drin_stride1,
dtout_dtin, dtout_dtin_stride0, dtout_dtin_stride1,
// input
rt_out, rt_out_stride0,
&P1(rt_in,3), rt_in_stride0,
false);
for(int i=0; i<3; i++)
P1(rt_out,3+i) *= -1.;
if(dtout_dtin)
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P2(dtout_dtin,i,j) *= -1.;
}
// Compose two Rt transformations
// R0*(R1*x + t1) + t0 =
// (R0*R1)*x + R0*t1+t0
void mrcal_compose_Rt_full( // output
double* Rt_out, // (4,3) array
int Rt_out_stride0, // in bytes. <= 0 means "contiguous"
int Rt_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt_0, // (4,3) array
int Rt_0_stride0, // in bytes. <= 0 means "contiguous"
int Rt_0_stride1, // in bytes. <= 0 means "contiguous"
const double* Rt_1, // (4,3) array
int Rt_1_stride0, // in bytes. <= 0 means "contiguous"
int Rt_1_stride1 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(Rt_out, 4,3);
init_stride_2D(Rt_0, 4,3);
init_stride_2D(Rt_1, 4,3);
// for in-place operation
double t0[] = { P2(Rt_0,3,0),
P2(Rt_0,3,1),
P2(Rt_0,3,2) };
// t <- R0*t1
mul_vec3_gen33t_vout_full(&P2(Rt_out,3,0), Rt_out_stride1,
&P2(Rt_1, 3,0), Rt_1_stride1,
Rt_0, Rt_0_stride0, Rt_0_stride1);
// R <- R0*R1
mul_gen33_gen33_vout_full( Rt_out, Rt_out_stride0, Rt_out_stride1,
Rt_0, Rt_0_stride0, Rt_0_stride1,
Rt_1, Rt_1_stride0, Rt_1_stride1 );
// t <- R0*t1+t0
for(int i=0; i<3; i++)
P2(Rt_out,3,i) += t0[i];
}
// Compose two rt transformations. It is assumed that we're getting no gradients
// at all or we're getting ALL the gradients: only dr_r0 is checked for NULL
//
// dr_dt0 is not returned: it is always 0
// dr_dt1 is not returned: it is always 0
// dt_dr1 is not returned: it is always 0
// dt_dt0 is not returned: it is always the identity matrix
void mrcal_compose_rt_full( // output
double* rt_out, // (6,) array
int rt_out_stride0, // in bytes. <= 0 means "contiguous"
double* dr_r0, // (3,3) array; may be NULL
int dr_r0_stride0, // in bytes. <= 0 means "contiguous"
int dr_r0_stride1, // in bytes. <= 0 means "contiguous"
double* dr_r1, // (3,3) array; may be NULL
int dr_r1_stride0, // in bytes. <= 0 means "contiguous"
int dr_r1_stride1, // in bytes. <= 0 means "contiguous"
double* dt_r0, // (3,3) array; may be NULL
int dt_r0_stride0, // in bytes. <= 0 means "contiguous"
int dt_r0_stride1, // in bytes. <= 0 means "contiguous"
double* dt_t1, // (3,3) array; may be NULL
int dt_t1_stride0, // in bytes. <= 0 means "contiguous"
int dt_t1_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* rt_0, // (6,) array
int rt_0_stride0, // in bytes. <= 0 means "contiguous"
const double* rt_1, // (6,) array
int rt_1_stride0 // in bytes. <= 0 means "contiguous"
)
{
init_stride_1D(rt_out, 6);
init_stride_2D(dr_r0, 3,3);
init_stride_2D(dr_r1, 3,3);
init_stride_2D(dt_r0, 3,3);
init_stride_2D(dt_t1, 3,3);
init_stride_1D(rt_0, 6);
init_stride_1D(rt_1, 6);
// r0 (r1 x + t1) + t0 = r0 r1 x + r0 t1 + t0
// -> I want (r0 r1, r0 t1 + t0)
// to make in-place operation work
double rt0[6];
for(int i=0; i<6; i++)
rt0[i] = P1(rt_0, i);
// Compute r01
mrcal_compose_r_full( rt_out, rt_out_stride0,
dr_r0, dr_r0_stride0, dr_r0_stride1,
dr_r1, dr_r1_stride0, dr_r1_stride1,
rt_0, rt_0_stride0,
rt_1, rt_1_stride0);
// t01 <- r0 t1
mrcal_rotate_point_r_full( &P1(rt_out,3), rt_out_stride0,
dt_r0, dt_r0_stride0, dt_r0_stride1,
dt_t1, dt_t1_stride0, dt_t1_stride1,
rt0, -1,
&P1(rt_1,3), rt_1_stride0,
false );
// t01 <- r0 t1 + t0
for(int i=0; i<3; i++)
P1(rt_out,3+i) += rt0[3+i];
}
void mrcal_compose_r_tinyr0_gradientr0_full( // output
double* dr_dr0, // (3,3) array; may be NULL
int dr_dr0_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr0_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* r_1, // (3,) array
int r_1_stride0 // in bytes. <= 0 means "contiguous"
)
{
init_stride_2D(dr_dr0, 3, 3);
init_stride_1D(r_1, 3);
// All the comments and logic appear in compose_r_core() in
// poseutils-uses-autodiff.cc. This is a special-case function with
// manually-computed gradients (because I want to make sure they're fast)
double norm2_r1 = 0.0;
for(int i=0; i<3; i++)
norm2_r1 += P1(r_1,i)*P1(r_1,i);
if(norm2_r1 < 2e-8*2e-8)
{
// Both vectors are tiny, so I have r01 = r0 + r1, and the gradient is
// an identity matrix
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P2(dr_dr0,i,j) = i==j ? 1.0 : 0.0;
return;
}
// I have
// r01 = r1
// - inner(r0,r1) (B/tanB - 1) / 4B^2 r1
// + B/tanB r0
// + cross(r0,r1) / 2
//
// I differentiate:
//
// dr01/dr0 =
// - outer(r1,r1) (B/tanB - 1) / 4B^2
// + B/tanB I
// - skew_symmetric(r1) / 2
double B = sqrt(norm2_r1) / 2.;
double B_over_tanB = B / tan(B);
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
P2(dr_dr0,i,j) =
- P1(r_1,i)*P1(r_1,j) * (B_over_tanB - 1.) / (4.*B*B);
for(int i=0; i<3; i++)
P2(dr_dr0,i,i) +=
B_over_tanB;
P2(dr_dr0,0,1) -= -P1(r_1,2)/2.;
P2(dr_dr0,0,2) -= P1(r_1,1)/2.;
P2(dr_dr0,1,0) -= P1(r_1,2)/2.;
P2(dr_dr0,1,2) -= -P1(r_1,0)/2.;
P2(dr_dr0,2,0) -= -P1(r_1,1)/2.;
P2(dr_dr0,2,1) -= P1(r_1,0)/2.;
}