-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVEGAS_Class.hpp
96 lines (67 loc) · 3.28 KB
/
VEGAS_Class.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#ifndef VEGAS_class
#define VEGAS_class
#include <cmath>
#include <vector>
#include <iterator>
#include <algorithm>
#include<random>
#include<functional>
// define some macros to avoid copy-paste of the same thing again and again:
// NDim the number of dimensions
// NBin the number of bins
// NBinInit the number of intial bins (if NBinInit ~= NBin, run subdivision until the number of buns is NBin)
// RandEn the random engine. This is optional, since I use a std::mt19937_64 as default
//Pass Dimension and number of bins in template, to make the code clearer (I think its faster than using new).
template<class LD, int NDim, int NBin, int NBinInit, class RandEn=std::mt19937_64>
class VEGAS{
using Func = std::function<void(LD u[NDim], LD *retrn)>;
public:
Func Integrand; //this is the function to be integrated
int NPoints, NBatches, NAdapts, AdaptPoints, NAdaptSubDivs, SubDivPoints;
// alpha is the exponent used to regulate the weights.
// constK makes the difference between the large and small weights grater (provided is a large number).
// See UpdateBins to see how it affects the regulated weights.
LD constK, alpha ;
// Notice that N number of bins need N+1 points to be defined
// LD Grid[NDim][NBin+1];
// LD weights[NDim][NBin];
// allow for the bins to be dynamically allocated (Grid and weights are arrays of vectors)
typename std::vector<LD> Grid[NDim],weights[NDim];
RandEn RndE;
VEGAS( Func function, int NPoints, int NBatches,
int NAdapts, int AdaptPoints, int NAdaptSubDivs, int SubDivPoints, LD constK=50., LD alpha=0.9);
~VEGAS(){};
//get a random point in [min,max]
LD Random(LD min , LD max);
// get random bin in NDimention NDim
int RandomBin();
int RandomBin(int NB);
// Claculate the partial integrals. Returns \int|f|*NPoints. This is what we need to
// get the regulated weights.
LD PartialIntegrals(int NB=NBin);
// subdivide the bin with the largest contribution untion you have NBin number of bins
void SubDivision();
// Update the bins
void UpdateBins(int NB=NBin);
// take the integral in [0,1]
LD IntegrateTot();
void IntegrateTot(LD *IntMean, LD *IntVariance);
// Use this to take batches. IntMean is the result, IntSigma is sqrt(Var).
// It returns chi^2/(NBathes-1) which should be close to 1.
LD IntegrateBatch(LD *IntMean, LD *IntSigma);
// Combine everything together. First adapt, and then run IntegrateBatch
LD Integrate(LD *IntMean, LD *IntSigma);
//---These are for the auxiliary functions. You can remove them with no effect.
// prints binpoints of NDim
void PrintGrid(int dim);
// prints all binpoints
void PrintGrid();
//
void PrintDist();
void PrintWeights();
// Calculate the weights. Just to check that the algorithm works. In practice we only need the partial integrals.
LD CalculateWeights(int NB=NBin);
// check that the sum of wieghts in each dimension is 1; (this is in CalcWeights-Check.hpp)
void CheckWeights(int NB=NBin);
};
#endif