-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputation.py
203 lines (191 loc) · 6.52 KB
/
computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import copy
import time
import pickle
import lz4.frame
import decision.engine as decision_engine
def edge_forward(models,inputs,use_Q):
x=inputs.cuda()
for model in models:
x=model(x)
x=x.detach().cpu()
if not use_Q:
return x,0
else:
min_range = max(torch.min(x).item(),-128)
max_range = min(torch.max(x).item(),128)
Q = torch.quantize_per_tensor(x, scale=(max_range-min_range)/(2**8), zero_point=int(min_range), dtype=torch.qint8)
E=torch.dequantize(Q)-x
Q = pickle.dumps(Q)
return Q,E
def edge(iters,models,inputs,label,meter,optimizers):
label=label.cuda()
outputs=Variable(inputs)
x=outputs.cuda()
for model in models:
x=model(x)
loss=F.cross_entropy(x,label)
for optim in optimizers:
if optim=="FREE":
pass
else:
optim.zero_grad()
loss.backward()
for optim in optimizers:
if optim=="FREE":
continue
else:
optim.step()
tt,loss_i,cc=summary_iter(x.detach().cpu(),label.cpu())
meter.update(tt,loss_i,cc)
if iters%100==0:
print('train %03d %e %f'%(iters,meter.losses/meter.cnt,meter.correct/meter.cnt))
def cloud(models,inputs,lable,optimizers,point,useQ):
lable=lable.cuda()
outputs=Variable(inputs, requires_grad=True).cuda()
outputs.retain_grad()
x=outputs
for model in models:
x=model(x)
loss=F.cross_entropy(x,lable)
for optim in optimizers[point:]:
if optim=="FREE":
pass
else:
optim.zero_grad()
loss.backward()
for optim in optimizers[point:]:
if optim=="FREE":
continue
else:
optim.step()
grad=outputs.grad.detach()
return x.detach().cpu(),grad.cpu()
def edge_backward(models,gradients,inputs,optimizers,point):
try:
x=torch.autograd.Variable(inputs,requires_grad=True).cuda()
for model in models:
x=model(x)
except:
x=models[0](inputs.cuda())
x=torch.autograd.Variable(x,requires_grad=True).cuda()
for model in models[1:]:
x=model(x)
gradients=gradients.cuda()
for optim in optimizers[:point+1]:
if optim=="FREE":
pass
else:
optim.zero_grad()
x.backward(gradients)
for optim in optimizers[:point+1]:
if optim=="FREE":
continue
else:
optim.step()
def test_edge(models,client,test_dataloader):
t=0
c=0
for i, (data, target) in enumerate(test_dataloader):
x=data.cuda()
for model in models:
x=model(x)
feature=copy.copy(x)
feature=feature.detach().cpu()
client.send_tensor('valid',-2,i,target,feature,False)
#download
_,_,_,result,gradient,_,_,_,_,_,_=client.recieve_tensor()
_,id=torch.max(result,1)
correct=torch.sum(id==target.data)
t+=correct.data.item()
c+=target.shape[0]
print("test:{}".format(t/c))
def summary_iter(result,label):
_,id=torch.max(result,1)
correct=torch.sum(id==label.data)
loss=F.cross_entropy(result.cuda(),label.cuda())
return correct.data.item(),loss.data.item(),label.shape[0]
def edge_backprocess(head,epoch,iters,result,gradient,Q_history,meter,models,optims,point,report_freq=100):
item='None'
topic='None'
#print(head)
if head=='Train':
s=time.time()
bepoch,bi,inputs,label,E=Q_history.get()
#error feedback
if not isinstance(E,int):
heisen=gradient*gradient
gradient=gradient-E*heisen
#print(epoch==bepoch and bi==iters)
edge_backward(models,gradient,inputs,optims,point)
tt,loss_i,cc=summary_iter(result,label)
meter.update(tt,loss_i,cc)
if iters%report_freq==0:
print('train %03d %e %f'%(iters,meter.losses/meter.cnt,meter.correct/meter.cnt))
#print(bi,"backward",time.time()-s)
#print(bi,'end',time.time())
elif head=='Valid':
inputs,label=Q_history.get()
tt,loss_i,cc=summary_iter(result,label)
meter.update(tt,loss_i,cc)
if iters%report_freq==0:
print('valid %03d %e %f'%(iters,meter.losses/meter.cnt,meter.correct/meter.cnt))
elif head=='EndTrain':
loss=meter.losses/meter.cnt
acc=meter.correct/meter.cnt
meter.reset()
torch.cuda.synchronize()
end=time.time()
item='EndTrain'
topic=(loss,acc,end)
elif head=='EndValid':
acc=meter.correct/meter.cnt
meter.reset()
item='EndValid'
topic=acc
return item,topic
def dynamic_decision(upload,download,models,global_models,remain_epoch,edge,cloud,feature_size,model_size,K,point,qtime):
#test bandwdith
upload=abs(upload)
download=abs(download)
#print("upload speed {} and download speed {}".format(upload,download))
#change partition
estimate_latency,new_point, use_Q=decision_engine.decide_point(edge,cloud,feature_size,upload,download,model_size,point,K,remain_epoch,qtime)
return estimate_latency,new_point,use_Q
def dynamic_change(client,models,global_models,point,new_point):
for model in models:
model=model.cpu()
global_models[:point+1]=models
if point<new_point:
#download point+1,...,new_point from cloud
client.recieve_and_update_model(global_models)
else:
#upload new_point+1,...,point to cloud
index=(new_point+1,point)
client.send_model(index,global_models[new_point+1:point+1])
models=global_models[:new_point+1]
for model in models:
model=model.cuda()
model.train()
return models
def cloud_dynamic_change_model(global_models,models,point,epoch,iters,server):
global_models[point:]=models
for model in models:
model=model.cpu()
if epoch<iters:
#send param to edge
index=(epoch+1,iters)
server.send_model(index,global_models[epoch+1:iters+1])
else:
#recv param from edge
server.recieve_and_update_model(global_models)
point=iters+1
models=global_models[point:]
for model in models:
model=model.cuda()
model.train()
return point, models