-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
49 lines (36 loc) · 1.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from configs import Config
import argparse
import experiments
import numpy as np
import os
import random
import torch
parser = argparse.ArgumentParser(description='IPR-GAN training script')
ConfigFile = lambda path: Config.parse(path)
parser.add_argument('-c', '--config', required=True, type=ConfigFile,
metavar='PATH', help='Path to YAML config file')
args = parser.parse_args()
def main(config):
if not config.resource.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
Experiment = getattr(experiments, config.experiment)
experiment = Experiment(config)
ckpt_path = os.path.join(config.log.path, 'checkpoint.pt')
if os.path.exists(ckpt_path):
print('*** LOAD CHECKPOINT ***')
state_dict = torch.load(ckpt_path)
experiment.load_state_dict(state_dict)
print(f'From Step: {experiment.init_step}\n')
experiment.start()
# save evaluation metrics into JSON file
eval_metrics_fpath = os.path.join(config.log.path, 'metrics.json')
experiment.evaluate(eval_metrics_fpath)
print(f'Result saved to: {eval_metrics_fpath}')
if __name__ == '__main__':
config = args.config
torch.manual_seed(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(config.seed)
random.seed(config.seed)
main(config)