-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathprune.py
90 lines (68 loc) · 3.14 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from configs import Config
import argparse
import experiments
import numpy as np
import os
import random
import re
import tempfile
import torch
parser = argparse.ArgumentParser(description='IPR-GAN pruning attack script')
parser.add_argument('-l', '--log', required=True, type=str, metavar='PATH',
help='Path to experiment log directory')
parser.add_argument('-s', '--sample', default=None, type=str, metavar='PATH',
help='Save sample images to PATH/ if provided')
parser.add_argument('--cpu', action='store_true', default=False,
help='Change device to CPU')
args = parser.parse_args()
def main(config):
if not config.resource.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# prevent creating new tfboard log
with tempfile.TemporaryDirectory() as tmp_dir:
log = config.log.path
os.makedirs(os.path.join(log, 'prune'), exist_ok=True)
config.log.path = tmp_dir
if config.get('sample_dir', None):
base_sample_dir = config.sample_dir
for percent in range(10, 100, 10):
# load experiment state dict
exp_state_dict = torch.load(
os.path.join(log, 'checkpoint.pt'),
map_location='cpu'
)
keys_g = list(filter(re.compile(r'G').match, exp_state_dict.keys()))
for key in keys_g:
global_w = []
for _, m in exp_state_dict[key].items():
global_w += m.abs().numpy().flatten().tolist()
global_w = np.array(global_w)
threshold = np.percentile(global_w, percent)
for name in exp_state_dict[key]:
index = exp_state_dict[key][name].abs() < threshold
exp_state_dict[key][name][index] = 0
# save evaluation metrics into JSON file
eval_metrics_fpath = os.path.join(log, 'prune', f'{percent:02d}.json')
if config.get('sample_dir', None):
config.sample_dir = os.path.join(base_sample_dir, f'{percent:02d}')
os.makedirs(config.sample_dir, exist_ok=True)
config.attack_mode = f'PRUNE-{percent}'
Experiment = getattr(experiments, config.experiment)
experiment = Experiment(config)
experiment.load_state_dict(exp_state_dict, strict=True)
experiment.evaluate(eval_metrics_fpath)
if __name__ == '__main__':
config_fpath = os.path.join(args.log, 'config.yaml')
assert os.path.exists(config_fpath), f'Invalid experiment log: {args.log}'
config = Config.parse(config_fpath)
config.resource.gpu = not args.cpu
if args.sample:
config.sample_dir = os.path.join(args.sample, os.path.basename(config.log.path) + '-PRUNE')
os.makedirs(args.sample, exist_ok=True)
os.makedirs(config.sample_dir, exist_ok=True)
torch.manual_seed(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(config.seed)
random.seed(config.seed)
main(config)