diff --git a/doc/grahom.xml b/doc/grahom.xml index 0b606a0c0..46fec9dc1 100644 --- a/doc/grahom.xml +++ b/doc/grahom.xml @@ -626,6 +626,7 @@ gap> EmbeddingsDigraphs(D1, D2); See also .

+ If col1 and col2, or col, are given, then they must represent vertex colourings; see for details of the permissible values for @@ -640,6 +641,8 @@ gap> EmbeddingsDigraphs(D1, D2); in the cases of the other operations. + See also . + src := Digraph([[1], [1, 2], [1, 3]]); @@ -763,3 +766,29 @@ true <#/GAPDoc> + +<#GAPDoc Label="DigraphsRespectsColouring"> + + + true or false. + + The operation DigraphsRespectsColouring verifies whether or not + the permutation or transformation x respects the vertex colourings + col1 and col2 of the digraphs src and range. + That is, DigraphsRespectsColouring returns true if and only if for + all vertices i of src, col1[i] = col2[i ^ x]. +

+ + src := Digraph([[1], [1, 2]]); + +gap> ran := Digraph([[1], [1, 2], [1, 3]]); + +gap> DigraphsRespectsColouring(src, ran, (1, 2), [2, 1], [1, 2, 1]); +true +gap> DigraphsRespectsColouring(src, ran, (1, 2), [2, 1], [2, 1, 1]); +false +]]> + + +<#/GAPDoc> diff --git a/doc/isomorph.xml b/doc/isomorph.xml index 673bedf79..ea1be7076 100644 --- a/doc/isomorph.xml +++ b/doc/isomorph.xml @@ -786,10 +786,11 @@ gap> OutNeighbours(canon); See also .

- If col1 and col2, or col, are given then they must - represent vertex colourings; see for details of the permissible values for - these argument. The homomorphism must then also have the property: + If col1 and col2, or col, are given, then they must + represent vertex colourings; see + + for details of the permissible values for + these arguments. The homomorphism must then also have the property: diff --git a/doc/z-chap6.xml b/doc/z-chap6.xml index 637ff97d3..c8931052c 100644 --- a/doc/z-chap6.xml +++ b/doc/z-chap6.xml @@ -62,6 +62,7 @@ from} $E_a$ \emph{to} $E_b$. In this case we say that $E_a$ and $E_b$ are <#Include Label="EmbeddingsDigraphs"> <#Include Label="IsDigraphHomomorphism"> <#Include Label="IsDigraphEmbedding"> + <#Include Label="DigraphsRespectsColouring"> <#Include Label="GeneratorsOfEndomorphismMonoid"> <#Include Label="DigraphColouring"> <#Include Label="DigraphGreedyColouring"> diff --git a/gap/grahom.gd b/gap/grahom.gd index 7bfd16d20..1817be489 100644 --- a/gap/grahom.gd +++ b/gap/grahom.gd @@ -87,3 +87,8 @@ DeclareOperation("IsDigraphEmbedding", DeclareOperation("IsDigraphColouring", [IsDigraph, IsList]); DeclareOperation("IsDigraphColouring", [IsDigraph, IsTransformation]); + +DeclareOperation("DigraphsRespectsColouring", + [IsDigraph, IsDigraph, IsTransformation, IsList, IsList]); +DeclareOperation("DigraphsRespectsColouring", + [IsDigraph, IsDigraph, IsPerm, IsList, IsList]); diff --git a/gap/grahom.gi b/gap/grahom.gi index 3d2fbdacd..4c701d839 100644 --- a/gap/grahom.gi +++ b/gap/grahom.gi @@ -451,6 +451,35 @@ end); # IsDigraph{Homo/Epi/...}morphism ######################################################################## +# Given: +# +# 1) two digraphs and , +# 2) a transformation mapping the vertices of to , and +# 3) two lists and of positive integers defining vertex +# colourings of and , +# +# this operation tests whether respects the colouring, i.e. whether for all +# vertices i in , cols[i] = cols[i ^ x]. +InstallMethod(DigraphsRespectsColouring, +[IsDigraph, IsDigraph, IsTransformation, IsList, IsList], +function(src, ran, x, cols1, cols2) + if Maximum(OnTuples(DigraphVertices(src), x)) > DigraphNrVertices(ran) then + ErrorNoReturn("the third argument must map the vertices of the first ", + "argument into the vertices of the second argument ", + ","); + fi; + DIGRAPHS_ValidateVertexColouring(DigraphNrVertices(src), cols1); + DIGRAPHS_ValidateVertexColouring(DigraphNrVertices(ran), cols2); + + return ForAll(DigraphVertices(src), i -> cols1[i] = cols2[i ^ x]); +end); + +InstallMethod(DigraphsRespectsColouring, +[IsDigraph, IsDigraph, IsPerm, IsList, IsList], +function(src, ran, x, cols1, cols2) + return DigraphsRespectsColouring(src, ran, AsTransformation(x), cols1, cols2); +end); + InstallMethod(IsDigraphHomomorphism, "for a digraph by out-neighbours, a digraph, and a perm", [IsDigraphByOutNeighboursRep, IsDigraph, IsPerm], @@ -492,15 +521,10 @@ end); InstallMethod(IsDigraphHomomorphism, "for a digraph by out-neighbours, a digraph, a transformation, and two lists", [IsDigraphByOutNeighboursRep, IsDigraph, IsTransformation, IsList, IsList], -function(src, ran, x, colours1, colours2) - if not IsDigraphHomomorphism(src, ran, x) then - return false; - fi; - - DIGRAPHS_ValidateVertexColouring(DigraphNrVertices(src), colours1); - DIGRAPHS_ValidateVertexColouring(DigraphNrVertices(ran), colours2); - return ForAll(DigraphVertices(src), i -> colours1[i] = colours2[i ^ x]); +function(src, ran, x, cols1, cols2) + return IsDigraphHomomorphism(src, ran, x) and + DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphEndomorphism, "for a digraph and a transformation", @@ -521,9 +545,9 @@ end); InstallMethod(IsDigraphEpimorphism, "for digraph, digraph, and transformation", [IsDigraph, IsDigraph, IsTransformation, IsList, IsList], -function(src, ran, x, c1, c2) - return IsDigraphHomomorphism(src, ran, x, c1, c2) - and OnSets(DigraphVertices(src), x) = DigraphVertices(ran); +function(src, ran, x, cols1, cols2) + return IsDigraphEpimorphism(src, ran, x) and + DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphEpimorphism, "for digraph, digraph, and perm", @@ -536,9 +560,9 @@ end); InstallMethod(IsDigraphEpimorphism, "for digraph, digraph, perm, list, and list", [IsDigraph, IsDigraph, IsPerm, IsList, IsList], -function(src, ran, x, c1, c2) - return IsDigraphHomomorphism(src, ran, x, c1, c2) - and OnSets(DigraphVertices(src), x) = DigraphVertices(ran); +function(src, ran, x, cols1, cols2) + return IsDigraphEpimorphism(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphMonomorphism, @@ -552,38 +576,19 @@ end); InstallMethod(IsDigraphMonomorphism, "for digraph, digraph, transformation, list, list", [IsDigraph, IsDigraph, IsTransformation, IsList, IsList], -function(src, ran, x, c1, c2) - return IsDigraphHomomorphism(src, ran, x, c1, c2) - and IsInjectiveListTrans(DigraphVertices(src), x); +function(src, ran, x, cols1, cols2) + return IsDigraphMonomorphism(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphMonomorphism, "for digraph, digraph, and perm", [IsDigraph, IsDigraph, IsPerm], IsDigraphHomomorphism); InstallMethod(IsDigraphMonomorphism, "for digraph, digraph, perm, list, list", -[IsDigraph, IsDigraph, IsPerm, IsList, IsList], IsDigraphHomomorphism); - -InstallMethod(IsDigraphEmbedding, -"for digraph, digraph by out-neighbours, transformation, list, and list", -[IsDigraph, IsDigraphByOutNeighboursRep, IsTransformation, IsList, IsList], -function(src, ran, x, c1, c2) - local y, induced, i, j; - if not IsDigraphMonomorphism(src, ran, x, c1, c2) then - return false; - fi; - y := MappingPermListList(OnTuples(DigraphVertices(src), x), - DigraphVertices(src)); - induced := BlistList(DigraphVertices(ran), OnSets(DigraphVertices(src), x)); - for i in DigraphVertices(ran) do - if induced[i] then - for j in OutNeighbours(ran)[i] do - if induced[j] and not IsDigraphEdge(src, i ^ y, j ^ y) then - return false; - fi; - od; - fi; - od; - return true; +[IsDigraph, IsDigraph, IsPerm, IsList, IsList], +function(src, ran, x, cols1, cols2) + return IsDigraphHomomorphism(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphEmbedding, @@ -609,6 +614,14 @@ function(src, ran, x) return true; end); +InstallMethod(IsDigraphEmbedding, +"for digraph, digraph by out-neighbours, transformation, list, and list", +[IsDigraph, IsDigraphByOutNeighboursRep, IsTransformation, IsList, IsList], +function(src, ran, x, cols1, cols2) + return IsDigraphEmbedding(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); +end); + InstallMethod(IsDigraphEmbedding, "for a digraph, a digraph by out-neighbours, and a perm", [IsDigraph, IsDigraphByOutNeighboursRep, IsPerm], @@ -634,23 +647,9 @@ end); InstallMethod(IsDigraphEmbedding, "for a digraph, a digraph by out-neighbours, a perm, a list, and a list", [IsDigraph, IsDigraphByOutNeighboursRep, IsPerm, IsList, IsList], -function(src, ran, x, c1, c2) - local y, induced, i, j; - if not IsDigraphHomomorphism(src, ran, x, c1, c2) then - return false; - fi; - y := x ^ -1; - induced := BlistList(DigraphVertices(ran), OnSets(DigraphVertices(src), x)); - for i in DigraphVertices(ran) do - if induced[i] then - for j in OutNeighbours(ran)[i] do - if induced[j] and not IsDigraphEdge(src, i ^ y, j ^ y) then - return false; - fi; - od; - fi; - od; - return true; +function(src, ran, x, cols1, cols2) + return IsDigraphEmbedding(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphColouring, "for a digraph by out-neighbours and a list", diff --git a/gap/isomorph.gi b/gap/isomorph.gi index c5c03949d..0857ba5f3 100644 --- a/gap/isomorph.gi +++ b/gap/isomorph.gi @@ -727,13 +727,9 @@ end); InstallMethod(IsDigraphIsomorphism, "for digraph, digraph, permutation, list, and list", [IsDigraph, IsDigraph, IsPerm, IsList, IsList], -function(src, ran, x, c1, c2) - if IsMultiDigraph(src) or IsMultiDigraph(ran) then - ErrorNoReturn("the 1st and 2nd arguments and must not have ", - "multiple edges,"); - fi; - return IsDigraphHomomorphism(src, ran, x, c1, c2) - and IsDigraphHomomorphism(ran, src, x ^ -1, c1, c2); +function(src, ran, x, cols1, cols2) + return IsDigraphIsomorphism(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphAutomorphism, "for a digraph and a permutation", @@ -759,13 +755,9 @@ end); InstallMethod(IsDigraphIsomorphism, "for digraph, digraph, transformation, list, and list", [IsDigraph, IsDigraph, IsTransformation, IsList, IsList], -function(src, ran, x, c1, c2) - local y; - y := AsPermutation(RestrictedTransformation(x, DigraphVertices(src))); - if y = fail then - return false; - fi; - return IsDigraphIsomorphism(src, ran, y, c1, c2); +function(src, ran, x, cols1, cols2) + return IsDigraphIsomorphism(src, ran, x) + and DigraphsRespectsColouring(src, ran, x, cols1, cols2); end); InstallMethod(IsDigraphAutomorphism, "for a digraph and a transformation",