-
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathdvhcalc.py
executable file
·488 lines (428 loc) · 18.4 KB
/
dvhcalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# dvhcalc.py
"""Calculate dose volume histogram (DVH) from DICOM RT Structure/Dose data."""
# Copyright (c) 2011-2018 Aditya Panchal
# Copyright (c) 2010 Roy Keyes
# This file is part of dicompyler-core, released under a BSD license.
# See the file license.txt included with this distribution, also
# available at https://github.com/dicompyler/dicompyler-core/
from __future__ import division
import numpy as np
import numpy.ma as ma
import matplotlib.path
from dicompylercore import dvh
from dicompylercore.config import skimage_available
import collections
from six import iteritems
import logging
logger = logging.getLogger('dicompylercore.dvhcalc')
if skimage_available:
from skimage.transform import rescale
def get_dvh(structure,
dose,
roi,
limit=None,
calculate_full_volume=True,
use_structure_extents=False,
interpolation_resolution=None,
interpolation_segments_between_planes=0,
thickness=None,
callback=None):
"""Calculate a cumulative DVH in Gy from a DICOM RT Structure Set & Dose.
Parameters
----------
structure : pydicom Dataset
DICOM RT Structure Set used to determine the structure data.
dose : pydicom Dataset
DICOM RT Dose used to determine the dose grid.
roi : int
The ROI number used to uniquely identify the structure in the structure
set.
limit : int, optional
Dose limit in cGy as a maximum bin for the histogram.
calculate_full_volume : bool, optional
Calculate the full structure volume including contours outside of the
dose grid.
use_structure_extents : bool, optional
Limit the DVH calculation to the in-plane structure boundaries.
interpolation_resolution : float, optional
Resolution in mm to interpolate the structure and dose data to.
interpolation_segments_between_planes : integer, optional
Number of segments to interpolate between structure slices.
thickness : float, optional
Structure thickness used to calculate volume of a voxel.
callback : function, optional
A function that will be called at every iteration of the calculation.
"""
from dicompylercore import dicomparser
rtss = dicomparser.DicomParser(structure)
rtdose = dicomparser.DicomParser(dose)
structures = rtss.GetStructures()
s = structures[roi]
s['planes'] = rtss.GetStructureCoordinates(roi)
s['thickness'] = thickness if thickness else rtss.CalculatePlaneThickness(
s['planes'])
calcdvh = calculate_dvh(s, rtdose, limit, calculate_full_volume,
use_structure_extents, interpolation_resolution,
interpolation_segments_between_planes,
callback)
return dvh.DVH(counts=calcdvh.histogram,
bins=(np.arange(0, 2) if (calcdvh.histogram.size == 1) else
np.arange(0, calcdvh.histogram.size + 1) / 100),
dvh_type='differential',
dose_units='Gy',
notes=calcdvh.notes,
name=s['name']).cumulative
def calculate_dvh(structure,
dose,
limit=None,
calculate_full_volume=True,
use_structure_extents=False,
interpolation_resolution=None,
interpolation_segments_between_planes=0,
callback=None):
"""Calculate the differential DVH for the given structure and dose grid.
Parameters
----------
structure : dict
A structure (ROI) from an RT Structure Set parsed using DicomParser
dose : DicomParser
A DicomParser instance of an RT Dose
limit : int, optional
Dose limit in cGy as a maximum bin for the histogram.
calculate_full_volume : bool, optional
Calculate the full structure volume including contours outside of the
dose grid.
use_structure_extents : bool, optional
Limit the DVH calculation to the in-plane structure boundaries.
interpolation_resolution : float, optional
Resolution in mm to interpolate the structure and dose data to.
interpolation_segments_between_planes : integer, optional
Number of segments to interpolate between structure slices.
callback : function, optional
A function that will be called at every iteration of the calculation.
"""
planes = collections.OrderedDict(sorted(iteritems(structure['planes'])))
calcdvh = collections.namedtuple('DVH', ['notes', 'histogram'])
logger.debug("Calculating DVH of %s %s", structure['id'],
structure['name'])
# Create an empty array of bins to store the histogram in cGy
# only if the structure has contour data or the dose grid exists
if ((len(planes)) and ("PixelData" in dose.ds)):
# Get the dose and image data information
dd = dose.GetDoseData()
id = dose.GetImageData()
# Determine structure and respectively dose grid extents
if interpolation_resolution or use_structure_extents:
extents = []
if use_structure_extents:
extents = structure_extents(structure['planes'])
dgindexextents = dosegrid_extents_indices(extents, dd)
dgextents = dosegrid_extents_positions(dgindexextents, dd)
# Determine LUT from extents
if use_structure_extents:
dd['lut'] = \
(dd['lut'][0][dgindexextents[0]:dgindexextents[2]],
dd['lut'][1][dgindexextents[1]:dgindexextents[3]])
# If interpolation is enabled, generate new LUT from extents
if interpolation_resolution:
dd['lut'] = get_resampled_lut(
dgindexextents,
dgextents,
new_pixel_spacing=interpolation_resolution,
min_pixel_spacing=id['pixelspacing'][0])
dd['rows'] = dd['lut'][1].shape[0]
dd['columns'] = dd['lut'][0].shape[0]
# Generate a 2d mesh grid to create a polygon mask in dose coordinates
# Code taken from Stack Overflow Answer from Joe Kington:
# https://stackoverflow.com/q/3654289/74123
# Create vertex coordinates for each grid cell
x, y = np.meshgrid(np.array(dd['lut'][0]), np.array(dd['lut'][1]))
x, y = x.flatten(), y.flatten()
dosegridpoints = np.vstack((x, y)).T
maxdose = int(dd['dosemax'] * dd['dosegridscaling'] * 100)
# Remove values above the limit (cGy) if specified
if isinstance(limit, int):
if (limit < maxdose):
maxdose = limit
hist = np.zeros(maxdose)
else:
return calcdvh('Empty DVH', np.array([0]))
n = 0
notes = None
planedata = {}
# Interpolate between planes in the direction of the structure
if interpolation_segments_between_planes:
planes = interpolate_between_planes(
planes, interpolation_segments_between_planes)
# Thickness derived from total number of segments relative to original
structure['thickness'] = structure[
'thickness'] / (interpolation_segments_between_planes + 1)
# Iterate over each plane in the structure
for z, plane in iteritems(planes):
# Get the dose plane for the current structure plane
if interpolation_resolution or use_structure_extents:
doseplane = get_interpolated_dose(
dose, z, interpolation_resolution, dgindexextents)
else:
doseplane = dose.GetDoseGrid(z)
if doseplane.size:
planedata[z] = calculate_plane_histogram(plane, doseplane,
dosegridpoints, maxdose,
dd, id, structure, hist)
# print(f'Slice: {z}, volume: {planedata[z][1]}')
else:
# If the dose plane is not found, still perform the calculation
# but only use it to calculate the volume for the slice
if not calculate_full_volume:
logger.warning('Dose plane not found for %s. Contours' +
' not used for volume calculation.', z)
notes = 'Dose grid does not encompass every contour.' + \
' Volume calculated within dose grid.'
else:
origin_z = id['position'][2]
logger.warning('Dose plane not found for %s.' +
' Using %s to calculate contour volume.',
z, origin_z)
_, vol = calculate_plane_histogram(
plane, dose.GetDoseGrid(origin_z), dosegridpoints, maxdose,
dd, id, structure, hist)
planedata[z] = (np.array([0]), vol)
notes = 'Dose grid does not encompass every contour.' + \
' Volume calculated for all contours.'
n += 1
if callback:
callback(n, len(planes))
# Volume units are given in cm^3
volume = sum([p[1] for p in planedata.values()]) / 1000
# print(f'total volume: {volume}')
# Rescale the histogram to reflect the total volume
hist = sum([p[0] for p in planedata.values()])
if hist.max() > 0:
hist = hist * volume / sum(hist)
else:
return calcdvh('Empty DVH', np.array([0]))
# Remove the bins above the max dose for the structure
hist = np.trim_zeros(hist, trim='b')
return calcdvh(notes, hist)
def calculate_plane_histogram(plane, doseplane, dosegridpoints, maxdose, dd,
id, structure, hist):
"""Calculate the DVH for the given plane in the structure."""
contours = [[x[0:2] for x in c['data']] for c in plane]
# Create a zero valued bool grid
grid = np.zeros((dd['rows'], dd['columns']), dtype=np.uint8)
# Calculate the dose plane mask for each contour in the plane
# and boolean xor to remove holes
for i, contour in enumerate(contours):
m = get_contour_mask(dd, id, dosegridpoints, contour)
grid = np.logical_xor(m.astype(np.uint8), grid).astype(np.bool)
hist, vol = calculate_contour_dvh(grid, doseplane, maxdose, dd, id,
structure)
return (hist, vol)
def get_contour_mask(dd, id, dosegridpoints, contour):
"""Get the mask for the contour with respect to the dose plane."""
doselut = dd['lut']
c = matplotlib.path.Path(list(contour))
# def inpolygon(polygon, xp, yp):
# return np.array(
# [Point(x, y).intersects(polygon) for x, y in zip(xp, yp)],
# dtype=np.bool)
# p = Polygon(contour)
# x, y = np.meshgrid(np.array(dd['lut'][0]), np.array(dd['lut'][1]))
# mask = inpolygon(p, x.ravel(), y.ravel())
# return mask.reshape((len(doselut[1]), len(doselut[0])))
grid = c.contains_points(dosegridpoints)
grid = grid.reshape((len(doselut[1]), len(doselut[0])))
return grid
def calculate_contour_dvh(mask, doseplane, maxdose, dd, id, structure):
"""Calculate the differential DVH for the given contour and dose plane."""
# Multiply the structure mask by the dose plane to get the dose mask
mask = ma.array(doseplane * dd['dosegridscaling'] * 100, mask=~mask)
# Calculate the differential dvh
hist, edges = np.histogram(mask.compressed(),
bins=maxdose,
range=(0, maxdose))
# Calculate the volume for the contour for the given dose plane
vol = sum(hist) * ((np.mean(np.diff(dd['lut'][0]))) *
(np.mean(np.diff(dd['lut'][1]))) *
(structure['thickness']))
return hist, vol
def structure_extents(coords):
"""Determine structure extents in patient coordinates.
Parameters
----------
coords : dict
Structure coordinates from dicomparser.GetStructureCoordinates.
Returns
-------
list
Structure extents in patient coordintes: [xmin, ymin, xmax, ymax].
"""
bounds = []
for z in sorted(coords.items()):
contours = [[x[0:2] for x in c['data']] for c in z[1]]
for contour in contours:
x, y = np.array([x[0:1] for x in contour]), np.array(
[x[1:2] for x in contour])
bounds.append([np.min(x), np.min(y), np.max(x), np.max(y)])
extents = np.array(bounds)
return np.array(
[np.amin(extents, axis=0)[0:2],
np.amax(extents, axis=0)[2:4]]).flatten().tolist()
def dosegrid_extents_indices(extents, dd, padding=1):
"""Determine dose grid extents from structure extents as array indices.
Parameters
----------
extents : list
Structure extents in patient coordintes: [xmin, ymin, xmax, ymax].
If an empty list, no structure extents will be used in the calculation.
dd : dict
Dose data from dicomparser.GetDoseData.
padding : int, optional
Pixel padding around the structure extents.
Returns
-------
list
Dose grid extents in pixel coordintes as array indices:
[xmin, ymin, xmax, ymax].
"""
if not len(extents):
return [0, 0, dd['lut'][0].shape[0] - 1, dd['lut'][1].shape[0] - 1]
dgxmin = np.argmin(np.fabs(dd['lut'][0] - extents[0])) - padding
if dd['lut'][0][dgxmin] > extents[0]:
dgxmin -= 1
dgxmax = np.argmin(np.fabs(dd['lut'][0] - extents[2])) + padding
dgymin = np.argmin(np.fabs(dd['lut'][1] - extents[1])) - padding
dgymax = np.argmin(np.fabs(dd['lut'][1] - extents[3])) + padding
dgxmin = 0 if dgxmin < 0 else dgxmin
dgymin = 0 if dgymin < 0 else dgymin
if dgxmax == dd['lut'][0].shape[0]:
dgxmax = dd['lut'][0].shape[0] - 1
if dgymax == dd['lut'][1].shape[0]:
dgymax = dd['lut'][1].shape[0] - 1
return [dgxmin, dgymin, dgxmax, dgymax]
def dosegrid_extents_positions(extents, dd):
"""Determine dose grid extents in patient coordinate indices.
Parameters
----------
extents : list
Dose grid extents in pixel coordintes: [xmin, ymin, xmax, ymax].
dd : dict
Dose data from dicomparser.GetDoseData.
Returns
-------
list
Dose grid extents in patient coordintes: [xmin, ymin, xmax, ymax].
"""
return [
dd['lut'][0][extents[0]], dd['lut'][1][extents[1]],
dd['lut'][0][extents[2]], dd['lut'][1][extents[3]]
]
def get_resampled_lut(index_extents,
extents,
new_pixel_spacing,
min_pixel_spacing):
"""Determine the patient to pixel LUT based on new pixel spacing.
Parameters
----------
index_extents : list
Dose grid extents as array indices.
extents : list
Dose grid extents in patient coordinates.
new_pixel_spacing : float
New pixel spacing in mm
min_pixel_spacing : float
Minimum pixel spacing used to determine the new pixel spacing
Returns
-------
tuple
A tuple of lists (x, y) of patient to pixel coordinate mappings.
Raises
------
AttributeError
Raised if the new pixel_spacing is not a factor of the minimum pixel
spacing.
Notes
-----
The new pixel spacing must be a factor of the original (minimum) pixel
spacing. For example if the original pixel spacing was ``3`` mm, the new
pixel spacing should be: ``3 / (2^n)`` mm, where ``n`` is an integer.
Examples
--------
Original pixel spacing: ``3`` mm, new pixel spacing: ``0.375`` mm
Derived via: ``(3 / 2^16) == 0.375``
"""
if (min_pixel_spacing % new_pixel_spacing != 0.0):
raise AttributeError(
"New pixel spacing must be a factor of %g/(2^n),"
% min_pixel_spacing +
" where n is an integer. Value provided was %g."
% new_pixel_spacing)
sampling_rate = np.array([
abs(index_extents[0] - index_extents[2]),
abs(index_extents[1] - index_extents[3])
])
xsamples, ysamples = sampling_rate * min_pixel_spacing / new_pixel_spacing
x = np.linspace(extents[0], extents[2], int(xsamples), dtype=np.float)
y = np.linspace(extents[1], extents[3], int(ysamples), dtype=np.float)
return x, y
def get_interpolated_dose(dose, z, resolution, extents):
"""Get interpolated dose for the given z, resolution & array extents.
Parameters
----------
dose : DicomParser
A DicomParser instance of an RT Dose.
z : float
Index in mm of z plane of dose grid.dose
resolution : float
Interpolation resolution less than or equal to dose grid pixel spacing.
extents : list
Dose grid index extents.
Returns
-------
ndarray
Interpolated dose grid with a shape larger than the input dose grid.
"""
# Return the dose bounded by extents if interpolation is not required
d = dose.GetDoseGrid(z)
extent_dose = d[extents[1]:extents[3],
extents[0]:extents[2]] if len(extents) else d
if not resolution:
return extent_dose
if not skimage_available:
raise ImportError(
"scikit-image must be installed to perform DVH interpolation.")
scale = (np.array(dose.ds.PixelSpacing) / resolution).tolist()
interp_dose = rescale(
extent_dose,
scale=scale,
mode='symmetric',
order=1,
preserve_range=True)
return interp_dose
def interpolate_between_planes(planes, n=2):
"""Interpolate n additional structure planes (segments) in between planes.
Parameters
----------
planes : dict
RT Structure plane data from dicomparser.GetStructureCoordinates.
n : int, optional
Number of planes to interpolate in between the existing planes.
Returns
-------
dict
Plane data with additional keys representing interpolated planes.
"""
keymap = {np.array([k], dtype=np.float32)[0]: k for k in planes.keys()}
sorted_keys = np.sort(np.array(list(planes.keys()), dtype=np.float32))
num_new_samples = (len(planes.keys()) * (n + 1)) - n
newgrid = np.linspace(sorted_keys[0], sorted_keys[-1], num_new_samples)
new_planes = {}
# If the plane already exists in the dictionary, use it
# otherwise use the closest plane
# TODO: Add actual interpolation of structure data between planes
for plane in newgrid:
new_plane = sorted_keys[np.argmin(np.fabs(sorted_keys - plane))]
new_planes[plane] = planes[keymap[new_plane]]
return new_planes