-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_LR_L2.py
125 lines (111 loc) · 4.85 KB
/
3_LR_L2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 14 11:09:09 2017
@author: dhingratul
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
def unPickle(pickle_file):
"""
Unpickles the data file into tr, te, and validation data
"""
with open(pickle_file, 'rb') as f:
datasets = pickle.load(f)
test_dataset = datasets['test_dataset']
test_labels = datasets['test_labels']
train_dataset = datasets['train_dataset']
train_labels = datasets['train_labels']
valid_dataset = datasets['valid_dataset']
valid_labels = datasets['valid_labels']
return test_dataset, test_labels, train_dataset, train_labels,\
valid_dataset, valid_labels
pickle_file = "/home/dhingratul/Documents/Dataset/notMNIST.pickle"
test_dataset, test_labels, train_dataset, train_labels, valid_dataset,\
valid_labels = unPickle(pickle_file)
"""
Reformat data as per the requirements of the program, data as a flat matrix,
and label as one hot encoded vector
"""
image_size = 28
num_labels = 10
def reformat(data, labels):
"""
Converts the data into a flat matrix, and labels into one-hot encoding
"""
data = data.reshape((-1, image_size * image_size)).astype(np.float32)
# -1:size being inferred from the parameters being passed
labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32)
return data, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
def accuracy(predictions, labels):
""" Outputs the accuracy based on gnd truth and predicted labels"""
return (100 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) /
labels.shape[0])
# Training with tf
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Use placeholder instead, that is fed at run time
tf_train_data = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32,
shape=(batch_size, num_labels))
tf_valid_data = tf.constant(valid_dataset)
tf_test_data = tf.constant(test_dataset)
# Variables are the parameters that are trained: Weights and Biases
# Initialize weights to random values, using truncated normal distribution
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation
logits = tf.matmul(tf_train_data, weights) + biases
# Softmax loss
loss_intermediate = tf.nn.softmax_cross_entropy_with_logits(
labels=tf_train_labels, logits=logits)
# Regularizer : L' = L + \beta * L_2
beta = 0.01
regularizer = tf.nn.l2_loss(weights)
# Take mean over the loss
avg_loss = tf.reduce_mean(loss_intermediate + beta * regularizer)
# Gradient Descent Optimizer
lr = 0.5 # Learning rate
optimizer = tf.train.GradientDescentOptimizer(lr).minimize(avg_loss)
# Predictions
train_pred = tf.nn.softmax(logits)
valid_logits = tf.matmul(tf_valid_data, weights) + biases
valid_pred = tf.nn.softmax(valid_logits)
test_logits = tf.matmul(tf_test_data, weights) + biases
test_pred = tf.nn.softmax(test_logits)
# Initialize the graph defined above
step_size = 3001
with tf.Session(graph=graph) as session:
# Initialize weights
tf.global_variables_initializer().run()
print("Initialized")
for step in range(step_size):
# Pick a randomized offset within training data
offset = ((step * batch_size) % (train_labels.shape[0] - batch_size))
# Generate a mini-batch`
mb_data = train_dataset[offset:(offset + batch_size), :]
mb_labels = train_labels[offset:(offset + batch_size), :]
# Create a Dictionary to feed to mini batch
feed_dict = {tf_train_data: mb_data, tf_train_labels: mb_labels}
_, l, pred = session.run([optimizer, avg_loss, train_pred],
feed_dict=feed_dict)
if step % 500 == 0:
print("MB Loss at step %d: %f" % (step, l))
print("MB Accuracy: %0.1f%%"
% accuracy(pred, mb_labels))
# Calling .eval() on valid_prediction is basically like calling
# run(), but just to get that one numpy array Note that it
# recomputes all its graph dependencies.
print('Validation accuracy: %.1f%%' % accuracy(valid_pred.eval(),
valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_pred.eval(),
test_labels))