-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdefine_SM_inputs.js
executable file
·736 lines (649 loc) · 22.9 KB
/
define_SM_inputs.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Script written by Ryan L. Crumley, July 2019
// Edited by DFH to add PRISM and fix NLCD, July 2019
// Edited by Nina to add SWR & LWR, Dec 2019
// When using this script, simply copy and paste to your own file directory system.
// Experiment and make changes to your own version of this script.
// Any changes that you make here will be saved here permanently. Only make changes that work!
// If you make changes, comment them out in a descriptive manner, and leave your name and date in the comments like;
// RLC add, 2019-07-15 Blah Blah Blah
////////////////////////////////////////////////////////////////////////
// This script will create all the required inputs for SnowModel, in geotiff format
// It can be used in conjunction with the Matlab script from D.Hill, July 2019
// OUTPUTS of this script:
// 1) NLCD of the user-defined region, in geotiff
// 2) DEM of the user-defined region, in geotiff
// 3) Reanlaysis inputs for creating the MicroMet file, in geotiff format
// 4) PRISM climatologies of temp and precip (1 file per month)
// First, define a color scheme for the map visualization below.
var grnbrn = ['#543005','#8c510a','#bf812d','#dfc27d','#f6e8c3','#f5f5f5','#c7eae5','#80cdc1','#35978f','#01665e','#003c30'];
var visparams = {min:0,max:4000,palette:grnbrn};
var visparams_aster = {min:0,max:4000,bands:['elevation'],palette:grnbrn};
//////////////////////////////////////////////////////////////////////
//////////////// Variables requiring input ///////////////////////
//////////////////////////////////////////////////////////////////////
// Create a domain name to attach to your output. Optional.
var domain_name = 'WY'
// These are the min and max corners of your domain in Lat, Long
// Western Wyoming
// Input the minimum lat, lower left corner
var minLat = 42.363116
// Input the minimum long, lower left corner
var minLong = -111.155208
// Input the max lat, upper right corner
var maxLat = 44.582480
// Input the max Long, upper right corner
var maxLong = -109.477849
// These are the min and max corners of your reanalysis in Lat, Long (create a slightly larger box)
// Input the minimum lat, lower left corner
var minLat2 = (minLat - 0.25);
// print(minLat2);
// Input the minimum long, lower left corner
var minLong2 = (minLong - 0.5);
// Input the max lat, upper right corner
var maxLat2 = (maxLat + 0.25);
// Input the max Long, upper right corner
var maxLong2 = (maxLong + 0.5);
// This resolution for final output of NLCD and DEM only
// This is in meters
var my_resolution = 100
// Define the final output projection using EPSG codes
// WGS UTM Zone 12 Code for Idaho/Wyoming = 32612
// WGS UTM Zone 11 Code for Nevada = 32611
// WGS UTM Zone 10 Code for West Coast = 32610
// WGS 84 4326
// WGS UTM 10
// WGS Alaska Albers = 3338
var epsg_code = 'EPSG:32612';
// Name the DEM output
var dem_name = 'DEM';
// Name the Land Cover output
var lc_name = 'NLCD2016';
// The Beginning and End Dates you care about //
// This will start on the 'begin' date at 0:00 and the last iteration will be
// on the day before the 'end' date below. Look at the printed variable 'tair from CFSv2'
// in the console to double check.
var begin = '2014-09-01';
var end = '2019-09-01';
//////////////////////////////////////////////////////////////////
///////////////// DOMAIN ////////////////////////////////
//////////////////////////////////////////////////////////////////
// Define the desired rectangular domain
// NOTE: The projection is not reset until the exporting process which also
// allows for it to be visualized as a layer.
var my_domain = ee.Geometry.Rectangle({
coords:[minLong,minLat,maxLong,maxLat],
proj: 'EPSG:4326',
geodesic:true,
});
//,'EPSG:32612',false);
// This adds the domain you care about to the visualization
Map.addLayer(my_domain,visparams,'My Domain');
print (my_domain);
// This adds the extent of the reanalysis product to the visualization.
var my_domain2 = ee.Geometry.Rectangle([minLong2,minLat2,maxLong2,maxLat2]);//,'EPSG:32612',false);
Map.addLayer(my_domain2,visparams,'My Reanalysis Domain');
print (my_domain2);
// Check the domain area in meters squared. Uncomment to check.
//var my_domain_area = my_domain.area();
//print(my_domain_area);
//////////////// Datasets of Interest //////////////////////
//////// Digital Elevation Models and Land Cover /////////
///////////////////////////////////////////////////////////////
// NOTE: several choices below for DEM. Uncomment your preferred option
//////// Import 30m SRTM Data ///////////////////
// NOTE: This only covers through 60 degrees latitude. See visualization layers.
//var SRTM30 = ee.Image('USGS/SRTMGL1_003');
// Find out some info about this image (hint: look in the console)
//var bands30 = SRTM30.bandNames();
//var info30 = SRTM30.getInfo();
//print(bands30,'Band Names');
//print(info30,'Band Info');
//Map.addLayer(SRTM30,visparams,'SRTM30');
//////// Import 100m ASTER data //////////////
// NOTE: this works above 60 deg lat; better for Alaska...
//var ASTER = ee.Image('NASA/ASTER_GED/AG100_003');
// Find out some info about this image (hint: look in the console)
//var bands100 = ASTER.bandNames();
//var info100 = ASTER.getInfo();
//print(bands100,'Band Names');
//print(info100,'Band Info');
//Map.addLayer(ASTER,visparams_aster,'ASTER');
///////// Import 90m SRTM Data ////////////////////
// NOTE: This only covers through 60 degrees latitude. See visualization layers.
var SRTM90 = ee.Image('CGIAR/SRTM90_V4');
var bands90 = SRTM90.bandNames();
var info90 = SRTM90.getInfo();
print(bands90,'Band Names');
print(info90,'Band Info');
//Map.addLayer(SRTM90,visparams,'SRTM90');
//////// Import NLCD Dataset ////////////////////
var NLCD = ee.ImageCollection('USGS/NLCD');
//Next: the NLCD has numerous images for different years. I want to use
//the most current (2016), so I filter by time to isolate 2016 slice.
var landcover = NLCD.select('landcover');
var landcoverfiltered=landcover.filterDate('2015-01-01','2018-01-01');
var landcoverVis = {
min: 0.0,
max: 95.0,
palette: [
'466b9f', 'd1def8', 'dec5c5', 'd99282', 'eb0000', 'ab0000', 'b3ac9f',
'68ab5f', '1c5f2c', 'b5c58f', 'af963c', 'ccb879', 'dfdfc2', 'd1d182',
'a3cc51', '82ba9e', 'dcd939', 'ab6c28', 'b8d9eb', '6c9fb8'
],
};
// Next, the following is the way I have been able to convert the image collection
// (only one image at this point) to a single image. Must be a better way.
var lcsingle=landcoverfiltered.median();
Map.addLayer(lcsingle, landcoverVis, 'Landcover');
//////////////// Datasets of Interest //////////////////////
//////// PRISM DATA /////////
///////////////////////////////////////////////////////////////
//NOTE: these are 2.5 arc min. Roughly ~4 km. Seems to be the best option available...
//NOTE: you can pick any 30 year period you want. I chose 1985-2015.
///////// Import PRISM Climatologies ////////////////////
// Precip first...
var prism = ee.ImageCollection('OREGONSTATE/PRISM/AN81m');
var precipitation = prism.select('ppt');
var janppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(1,1,'month'));
var febppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(2,2,'month'));
var marppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(3,3,'month'));
var aprppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(4,4,'month'));
var mayppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(5,5,'month'));
var junppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(6,6,'month'));
var julppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(7,7,'month'));
var augppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(8,8,'month'));
var sepppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(9,9,'month'));
var octppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(10,10,'month'));
var novppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(11,11,'month'));
var decppt = precipitation.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(12,12,'month'));
// reduce image collection with mean()
var janmean = janppt.mean();
var febmean = febppt.mean();
var marmean = marppt.mean();
var aprmean = aprppt.mean();
var maymean = mayppt.mean();
var junmean = junppt.mean();
var julmean = julppt.mean();
var augmean = augppt.mean();
var sepmean = sepppt.mean();
var octmean = octppt.mean();
var novmean = novppt.mean();
var decmean = decppt.mean();
var precipitationVis = {
min: 0.0,
max: 300.0,
palette: ['red', 'yellow', 'green', 'cyan', 'purple'],
};
Map.setCenter(-100.55, 40.71, 4);
Map.addLayer(janmean, precipitationVis, 'Jan Precipitation');
Map.addLayer(febmean, precipitationVis, 'Feb Precipitation');
Map.addLayer(marmean, precipitationVis, 'Mar Precipitation');
Map.addLayer(aprmean, precipitationVis, 'Apr Precipitation');
Map.addLayer(maymean, precipitationVis, 'May Precipitation');
Map.addLayer(junmean, precipitationVis, 'Jun Precipitation');
Map.addLayer(julmean, precipitationVis, 'Jul Precipitation');
Map.addLayer(augmean, precipitationVis, 'Aug Precipitation');
Map.addLayer(sepmean, precipitationVis, 'Sep Precipitation');
Map.addLayer(octmean, precipitationVis, 'Oct Precipitation');
Map.addLayer(novmean, precipitationVis, 'Nov Precipitation');
Map.addLayer(decmean, precipitationVis, 'Dec Precipitation');
// tmean next
var tmean = prism.select('tmean');
var jantmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(1,1,'month'));
var febtmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(2,2,'month'));
var martmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(3,3,'month'));
var aprtmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(4,4,'month'));
var maytmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(5,5,'month'));
var juntmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(6,6,'month'));
var jultmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(7,7,'month'));
var augtmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(8,8,'month'));
var septmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(9,9,'month'));
var octtmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(10,10,'month'));
var novtmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(11,11,'month'));
var dectmean = tmean.filter(ee.Filter.calendarRange(1985,2015,'year'))
.filter(ee.Filter.calendarRange(12,12,'month'));
// reduce image collection with mean()
var jantmean = jantmean.mean();
var febtmean = febtmean.mean();
var martmean = martmean.mean();
var aprtmean = aprtmean.mean();
var maytmean = maytmean.mean();
var juntmean = juntmean.mean();
var jultmean = jultmean.mean();
var augtmean = augtmean.mean();
var septmean = septmean.mean();
var octtmean = octtmean.mean();
var novtmean = novtmean.mean();
var dectmean = dectmean.mean();
var tmeanVis = {
min: -30.0,
max: 30.0,
palette: ['red', 'yellow', 'green', 'cyan', 'purple'],
};
Map.setCenter(-100.55, 40.71, 4);
Map.addLayer(jantmean, tmeanVis, 'Jan Tmean');
Map.addLayer(febtmean, tmeanVis, 'Feb Tmean');
Map.addLayer(martmean, tmeanVis, 'Mar Tmean');
Map.addLayer(aprtmean, tmeanVis, 'Apr Tmean');
Map.addLayer(maytmean, tmeanVis, 'May Tmean');
Map.addLayer(juntmean, tmeanVis, 'Jun Tmean');
Map.addLayer(jultmean, tmeanVis, 'Jul Tmean');
Map.addLayer(augtmean, tmeanVis, 'Aug Tmean');
Map.addLayer(septmean, tmeanVis, 'Sep Tmean');
Map.addLayer(octtmean, tmeanVis, 'Oct Tmean');
Map.addLayer(novtmean, tmeanVis, 'Nov Tmean');
Map.addLayer(dectmean, tmeanVis, 'Dec Tmean');
//////////////// Datasets of Interest //////////////////////
//////// Reanalysis DATA /////////
///////////////////////////////////////////////////////////////
var cfsv2 = ee.ImageCollection('NOAA/CFSV2/FOR6H')
.filter(ee.Filter.date(begin,end));
var tair = cfsv2.select('Temperature_height_above_ground').toBands();
var elev = cfsv2.select('Geopotential_height_surface').toBands();
var uwind = cfsv2.select('u-component_of_wind_height_above_ground').toBands();
var vwind = cfsv2.select('v-component_of_wind_height_above_ground').toBands();
var surfpres = cfsv2.select('Pressure_surface').toBands();
var spechum = cfsv2.select('Specific_humidity_height_above_ground').toBands();
var prec = cfsv2.select('Precipitation_rate_surface_6_Hour_Average').toBands();
var lwr = cfsv2.select('Downward_Long-Wave_Radp_Flux_surface_6_Hour_Average').toBands();
var swr = cfsv2.select('Downward_Short-Wave_Radiation_Flux_surface_6_Hour_Average').toBands();
// To check the time iterations, look at the printed variable in the console
print(tair, 'tair from CFSv2');
//////////////////////////////////////////////////////////////
/////// EXPORT, RESCALE, REPROJECT, CLIP //////////////////
//////////////////////////////////////////////////////////////
// Export the SRTM DEM to Geotiff
//Export.image.toDrive({
// image: SRTM90,
// description: dem_name+'_'+domain_name,
// region: my_domain,
// scale: my_resolution,
// crs: epsg_code,
// maxPixels: 1e12
//});
// Export the DEM to Geotiff
Export.image.toDrive({
image: SRTM90,
description: dem_name+'_'+domain_name,
region: my_domain,
scale: my_resolution,
crs: epsg_code,
maxPixels: 1e12
});
// Export the NLCD to Geotiff
Export.image.toDrive({
image: lcsingle,
description: lc_name+'_'+domain_name,
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the CFSv2 Temp to Geotiff
Export.image.toDrive({
image: tair,
description: 'cfsv2_'+begin+end+'_tair',
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 Temp to Geotiff
Export.image.toDrive({
image: elev,
description: 'cfsv2_'+begin+end+'_elev',
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 Prec to Geotiff
Export.image.toDrive({
image: prec,
description: 'cfsv2_'+begin+end+'_prec' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 Uwind to Geotiff
Export.image.toDrive({
image: uwind,
description: 'cfsv2_'+begin+end+'_uwind' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 Vwind to Geotiff
Export.image.toDrive({
image: vwind,
description: 'cfsv2_'+begin+end+'_vwind' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 Surfpres to Geotiff
Export.image.toDrive({
image: surfpres,
description: 'cfsv2_'+begin+end+'_surfpres' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 RedHum to Geotiff
Export.image.toDrive({
image: spechum,
description: 'cfsv2_'+begin+end+'_spechum' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 LWR to Geotiff
Export.image.toDrive({
image: lwr,
description: 'cfsv2_'+begin+end+'_lwr' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Export the CFSv2 SWR to Geotiff
Export.image.toDrive({
image: swr,
description: 'cfsv2_'+begin+end+'_swr' ,
region: my_domain2,
scale: 22200,
crs: epsg_code,
});
// Precip grids
// Export the Jan ppt to Geotiff
Export.image.toDrive({
image: janmean,
description: 'janppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Feb ppt to Geotiff
Export.image.toDrive({
image: febmean,
description: 'febppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Mar ppt to Geotiff
Export.image.toDrive({
image: marmean,
description: 'marppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Apr ppt to Geotiff
Export.image.toDrive({
image: aprmean,
description: 'aprppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the May ppt to Geotiff
Export.image.toDrive({
image: maymean,
description: 'mayppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Jun ppt to Geotiff
Export.image.toDrive({
image: junmean,
description: 'junppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Jul ppt to Geotiff
Export.image.toDrive({
image: julmean,
description: 'julppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Aug ppt to Geotiff
Export.image.toDrive({
image: augmean,
description: 'augppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Sep ppt to Geotiff
Export.image.toDrive({
image: sepmean,
description: 'sepppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Oct ppt to Geotiff
Export.image.toDrive({
image: octmean,
description: 'octppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Nov ppt to Geotiff
Export.image.toDrive({
image: novmean,
description: 'novppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Dec ppt to Geotiff
Export.image.toDrive({
image: decmean,
description: 'decppt',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Tmean grids
// Export the Jan tmean to Geotiff
Export.image.toDrive({
image: jantmean,
description: 'jantmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Feb tmean to Geotiff
Export.image.toDrive({
image: febtmean,
description: 'febtmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Mar tmean to Geotiff
Export.image.toDrive({
image: martmean,
description: 'martmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Apr tmean to Geotiff
Export.image.toDrive({
image: aprtmean,
description: 'aprtmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the May tmean to Geotiff
Export.image.toDrive({
image: maytmean,
description: 'maytmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Jun tmean to Geotiff
Export.image.toDrive({
image: juntmean,
description: 'juntmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Jul tmean to Geotiff
Export.image.toDrive({
image: jultmean,
description: 'jultmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Aug tmean to Geotiff
Export.image.toDrive({
image: augtmean,
description: 'augtmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Sep tmean to Geotiff
Export.image.toDrive({
image: septmean,
description: 'septmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Oct tmean to Geotiff
Export.image.toDrive({
image: octtmean,
description: 'octtmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Nov tmean to Geotiff
Export.image.toDrive({
image: novtmean,
description: 'novtmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
// Export the Dec tmean to Geotiff
Export.image.toDrive({
image: dectmean,
description: 'dectmean',
region: my_domain,
scale: my_resolution,
crs: epsg_code,
});
///////////////////////////////////////////////////////////////
///////////////// EXTRA STUFF ////////////////////////////////
///////////////////////////////////////////////////////////////
/*
var dataset = ee.Image('JAXA/ALOS/AW3D30_V1_1');
var elevation = dataset.select('AVE');
var elevationVis = {
min: 0.0,
max: 4000.0,
palette: ['0000ff', '00ffff', 'ffff00', 'ff0000', 'ffffff'],
};
Map.setCenter(136.85, 37.37, 4);
Map.addLayer(elevation, elevationVis, 'Elevation');
*/
///////////////////////////////////////////////////////////////
//////////// Import HUC Watersheds ////////////////////
///////////////////////////////////////////////////////////////
// If you want to use the HUC watersheds for some reason, uncomment these lines.
var HUC = ee.FeatureCollection('USGS/WBD/2017/HUC08');
var styleParams = {
fillColor: 'ece7f2',
color: '000000',
width: 1.0,
};
var wsheds = HUC.style(styleParams);
Map.addLayer(wsheds, {}, 'USGS/WBD/2017/HUC08');
////////////////////////////////////////////////////////////////
///////// Save Info from domains in the script /////////////
////////////////////////////////////////////////////////////////
/*
// Thompson Pass Domain
// Input the minimum lat, lower left corner
var minLat = 60.9651385
// Input the minimum long, lower left corner
var minLong = -146.4828057
// Input the max lat, upper right corner
var maxLat = 61.538588
// Input the max Long, upper right corner
var maxLong = -144.879882
//GOA Domain
// Input the minimum lat, lower left corner
var minLat = 56.2819
// Input the minimum long, lower left corner
var minLong = -156.8955
// Input the max lat, upper right corner
var maxLat = 60.8622
// Input the max Long, upper right corner
var maxLong = -122.7722
*/
//Central OR Domain
// Input the minimum lat, lower left corner
//var minLat = 42.045789
// Input the minimum long, lower left corner
//var minLong = -123.476288
// Input the max lat, upper right corner
//var maxLat = 45.702675
// Input the max Long, upper right corner
//var maxLong = -121.231792
//////////////////////////////////////////////////////////
///////////// ASPECT/SLOPE/HILLSHADE //////////////////
///////////////////////////////////////////////////////////////
/*
// This pre-cooked GEE function calculates slope in degrees (0-90) from the DEM layer.
// It uses a 4 connected neighbors approach and edge pixels will have missing data.
var slope = ee.Terrain.slope(DEM);
Map.addLayer(slope,{},'Slope');
// This pre-cooked GEE function calculates aspect in degrees (0-365) from the DEM layer.
// It uses a 4 connected neighbors approach and edge pixels will have missing data.
var aspect = ee.Terrain.aspect(DEM);
Map.addLayer(aspect,{},'Aspect');
// This pre-cooked GEE function creates a hillshade layer from the DEM.
// This can come in handy when trying to recognize local geography and physical features.
var hillshade = ee.Terrain.hillshade(DEM);
Map.addLayer(hillshade,visHillshade,'Hillshade');
// This pre-cooked function allows all of the terrain products to be visualized in a single,
// multi-band image. I like the red tinted visualization the best, with hillshade, slope, and
// elevation data as the RGB layers.
var all = ee.Terrain.products(DEM);
Map.addLayer(all,visProducts,'All Terrain Products');
*/