forked from mananjhaveri/NBME-Score-Clinical-Patient-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_roberta_large.py
482 lines (380 loc) · 15.2 KB
/
training_roberta_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import warnings
warnings.filterwarnings("ignore")
import gc
import os
import time
import torch
import wandb
import itertools
import numpy as np
import pandas as pd
import transformers
from torch import nn
from tqdm.notebook import tqdm
import torch.nn.functional as F
from sklearn import metrics, model_selection
from torch.utils.data import Sampler, Dataset, DataLoader
gc.enable()
config = dict(
# basic
seed = 3407,
num_jobs=1,
num_labels=2,
num_folds=5,
# model info
tokenizer_path = '../input/robertalarge',
model_checkpoint = '../input/robertalarge',
resume_training_checkpoint = None,
device = 'cuda' if torch.cuda.is_available() else 'cpu',
# trining paramters
learning_rate = 1e-5,
weight_decay = 1e-2,
max_length = 480,
train_batch_size = 4,
valid_batch_size = 8,
epochs_to_train = 5,
total_epochs = 5,
grad_acc_steps = 4,
# for this notebook
report_to = 'wandb',
output_dir = '',
fold_to_train = [2],
title = 'roberta-large',
debug = False,
platform = 'kaggle', # kaggle, colab
inference_only = False,
)
title = config['title']
if config['platform'] == 'colab':
config['output_dir'] = f'../output/{title}/'
base_path = 'drive/MyDrive/NBME'
os.chdir(base_path + '/src')
def setup_wandb(name):
if config['platform'] == 'kaggle':
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient()
secret_value_0 = user_secrets.get_secret("wandb_token")
else:
secret_value_0 = '...'
wandb.login(key=secret_value_0)
wandb.init(
project='NBME - Score Clinical Patient Notes',
entity="mananjhaveri",
name=name,
save_code=True,
)
wandb.config = config
def loc_list_to_ints(loc_list):
to_return = []
for loc_str in loc_list:
loc_strs = loc_str.split(";")
for loc in loc_strs:
start, end = loc.split()
to_return.append((int(start), int(end)))
return to_return
def tokenize_and_add_labels(tokenizer, example):
tokenized_inputs = tokenizer(
example["feature_text"],
example["pn_history"],
truncation="only_second",
max_length=config['max_length'],
padding="max_length",
return_offsets_mapping=True
)
labels = [0.0] * len(tokenized_inputs["input_ids"])
tokenized_inputs["location_int"] = loc_list_to_ints(example["location"])
tokenized_inputs["sequence_ids"] = tokenized_inputs.sequence_ids()
for idx, (seq_id, offsets) in enumerate(zip(tokenized_inputs["sequence_ids"], tokenized_inputs["offset_mapping"])):
if seq_id is None or seq_id == 0:
labels[idx] = -100
continue
exit = False
token_start, token_end = offsets
for feature_start, feature_end in tokenized_inputs["location_int"]:
if exit:
break
if token_start >= feature_start and token_end <= feature_end:
labels[idx] = 1.0
exit = True
tokenized_inputs["labels"] = labels
return tokenized_inputs
class NBMEData(torch.utils.data.Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
example = self.data.loc[idx]
tokenized = tokenize_and_add_labels(self.tokenizer, example)
input_ids = np.array(tokenized["input_ids"])
attention_mask = np.array(tokenized["attention_mask"])
labels = np.array(tokenized["labels"])
offset_mapping = np.array(tokenized["offset_mapping"])
sequence_ids = np.array(tokenized["sequence_ids"]).astype("float16")
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'targets': labels,
'offset_mapping': offset_mapping,
'sequence_ids': sequence_ids,
}
class NBMEModel(nn.Module):
def __init__(self, num_labels, path=None):
super().__init__()
layer_norm_eps: float = 1e-6
self.path = path
self.num_labels = num_labels
self.config = transformers.AutoConfig.from_pretrained(config['model_checkpoint'])
self.config.update(
{
"layer_norm_eps": layer_norm_eps,
}
)
self.transformer = transformers.AutoModel.from_pretrained(config['model_checkpoint'], config=self.config)
self.dropout = nn.Dropout(0.2)
self.output = nn.Linear(self.config.hidden_size, 1)
if self.path is not None:
self.load_state_dict(torch.load(self.path)['model'])
def forward(self, data):
ids = data['input_ids']
mask = data['attention_mask']
try:
target = data['targets']
except:
target = None
transformer_out = self.transformer(ids, mask)
sequence_output = transformer_out[0]
sequence_output = self.dropout(sequence_output)
logits = self.output(sequence_output)
ret = {
"logits": torch.sigmoid(logits),
}
if target is not None:
loss = self.get_loss(logits, target)
ret['loss'] = loss
ret['targets'] = target
return ret
def get_optimizer(self, learning_rate, weigth_decay):
optimizer = torch.optim.AdamW(
self.parameters(),
lr=learning_rate,
weight_decay=weigth_decay,
)
if self.path is not None:
optimizer.load_state_dict(torch.load(self.path)['optimizer'])
return optimizer
def get_scheduler(self, optimizer, num_warmup_steps, num_training_steps):
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
if self.path is not None:
scheduler.load_state_dict(torch.load(self.path)['scheduler'])
return scheduler
def get_loss(self, output, target):
loss_fn = nn.BCEWithLogitsLoss(reduction="none")
loss = loss_fn(output.view(-1, 1), target.view(-1, 1))
loss = torch.masked_select(loss, target.view(-1, 1) != -100).mean()
return loss
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.max = 0
self.min = 1e5
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if val > self.max:
self.max = val
if val < self.min:
self.min = val
def train_fn(model, train_loader, optimizer, scheduler, device, current_epoch):
losses = AverageMeter()
optimizer.zero_grad()
with tqdm(train_loader, unit="batch") as tepoch:
for batch_idx, data in enumerate(tepoch):
for k, v in data.items():
if k != 'offset_mapping':
data[k] = v.to(config['device'])
model.train()
loss = model(data)['loss'] / config['grad_acc_steps']
loss.backward()
losses.update(loss.item(), len(train_loader))
tepoch.set_postfix(train_loss=losses.avg)
if batch_idx % config['grad_acc_steps'] == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if config['report_to'] == 'wandb':
wandb.log({"epoch": current_epoch, "train_loss": losses.avg, 'lr': scheduler.get_lr()[0]})
def eval_fn(model, valid_loader, device, current_epoch):
losses = AverageMeter()
final_targets = []
final_predictions = []
offset_mapping = []
sequence_ids = []
model.eval()
with torch.no_grad():
with tqdm(valid_loader, unit="batch") as tepoch:
for batch_idx, data in enumerate(tepoch):
for k, v in data.items():
if k not in ['offset_mapping', 'sequence_id']:
data[k] = v.to(config['device'])
x = model(data)
loss = x['loss']
losses.update(loss.item(), len(valid_loader))
o = x['logits'].detach().cpu().numpy()
final_predictions.extend(o)
y = data['targets'].detach().cpu().numpy()
final_targets.extend(y)
offset_mapping.extend(data['offset_mapping'].tolist())
sequence_ids.extend(data['sequence_ids'].tolist())
predicted_locations = decode_predictions(final_predictions, offset_mapping, sequence_ids, test=False)
scores = get_score(predicted_locations, offset_mapping, sequence_ids, final_targets)
if config['report_to'] == 'wandb':
wandb.log({"epoch": current_epoch, "val_loss": losses.avg, 'val_score': scores['f1']})
return round(losses.avg, 4), round(scores['f1'], 4)
def decode_predictions(preds, offset_mapping, sequence_ids, test=False):
all_predictions = []
for pred, offsets, seq_ids in zip(preds, offset_mapping, sequence_ids):
# pred = sigmoid(pred)
start_idx = None
current_preds = []
for p, o, s_id in zip(pred, offsets, seq_ids):
# do nothing if sequence id is not 1
if s_id is None or s_id == 0:
continue
# if class = 1, track start and end location from offset map
if p > 0.5:
if start_idx is None:
start_idx = o[0]
end_idx = o[1]
# if class 0, record previously tracked predictions if not done already
elif start_idx is not None:
if test:
current_preds.append(f"{start_idx} {end_idx}")
else:
current_preds.append((start_idx, end_idx))
start_idx = None # reset
if test:
all_predictions.append("; ".join(current_preds)) # delimiting with semi-colon for submission requirement
else:
all_predictions.append(current_preds)
return all_predictions
def get_score(predictions, offset_mapping, sequence_ids, labels):
all_labels = []
all_preds = []
for preds, offsets, seq_ids, labels in zip(predictions, offset_mapping, sequence_ids, labels):
num_chars = max(list(itertools.chain(*offsets)))
char_labels = np.zeros((num_chars))
# formatting ground truth for evaluation
for o, s_id, label in zip(offsets, seq_ids, labels):
# do nothing if sequence id is not 1
if s_id is None or s_id == 0:
continue
if int(label) == 1:
char_labels[o[0]:o[1]] = 1
# formatting predictions for evaluation
char_preds = np.zeros((num_chars))
for start_idx, end_idx in preds:
char_preds[start_idx:end_idx] = 1
all_labels.extend(char_labels)
all_preds.extend(char_preds)
results = metrics.precision_recall_fscore_support(all_labels, all_preds, average = "binary")
return {
"precision": results[0],
"recall": results[1],
"f1": results[2]
}
def save_checkpoint(model, optimizer, scheduler, epoch, score, best_score, name):
print('saving model of this epoch as:', name)
name = config['output_dir'] + name
torch.save(
{
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
'score': score,
'best_score': best_score,
},
name
)
def run(df, fold, tokenizer, device, resume_training_checkpoint=None):
print('Fold:', fold)
print('\npreparing training data...')
train_df = df[df['kfold'] != fold].reset_index(drop=True)
train_dataset = NBMEData(train_df, tokenizer)
train_loader = DataLoader(
train_dataset,
batch_size=config['train_batch_size'],
shuffle=True,
)
print('\npreparing validation data...')
valid_df = df[df['kfold'] == fold].reset_index(drop=True)
valid_dataset = NBMEData(valid_df, tokenizer)
valid_loader = DataLoader(
valid_dataset,
batch_size=config['valid_batch_size'],
shuffle=False,
)
model = NBMEModel(config['num_labels'], resume_training_checkpoint)
model.to(device)
num_training_steps = (len(train_dataset) // (config['train_batch_size'] * config['grad_acc_steps'])) * config['total_epochs']
num_warmup_steps = int(num_training_steps * 0.01)
optimizer = model.get_optimizer(config['learning_rate'], config['weight_decay'])
scheduler = model.get_scheduler(optimizer, num_warmup_steps, num_training_steps)
config['num_training_steps'] = num_training_steps
config['num_warmup_steps'] = num_warmup_steps
if config['report_to'] == 'wandb':
setup_wandb(config['title'] + '-' + str(fold))
wandb.watch(model, log_freq=10)
epoch_start = 0
best_score = -1
if resume_training_checkpoint is not None:
epoch_start = torch.load(resume_training_checkpoint)['epoch'] + 1
best_score = torch.load(resume_training_checkpoint)['best_score']
start = time.time()
for epoch in range(epoch_start, epoch_start + config['epochs_to_train']):
print(f'\n\n\nTraining Epoch: {epoch}')
train_fn(model, train_loader, optimizer, scheduler, device, epoch)
print('Evaluation...')
val_loss, val_score = eval_fn(
model=model,
valid_loader=valid_loader,
device=device,
current_epoch=epoch,
)
if val_score > best_score:
best_score = val_score
save_checkpoint(model, optimizer, scheduler, epoch, val_score, best_score, f'best_model_{fold}.bin')
save_checkpoint(model, optimizer, scheduler, epoch, val_score, best_score, f'last_model_{fold}.bin')
print('Valid Score:', val_score, 'Valid Loss:', val_loss, 'Best Score:', best_score)
print(f'Best Score: {best_score}, Time Taken: {round(time.time() - start, 4)}s')
print()
if config['report_to'] == 'wandb':
wandb.finish()
tokenizer = transformers.AutoTokenizer.from_pretrained(config['tokenizer_path'])
train_df = pd.read_csv('../input/nbme-cleaned-with-extra-data-and-folds/train.csv')
if config['debug']:
train_df = train_df.sample(config['debug']).reset_index(drop=True)
if not config['inference_only']:
for fold in config['fold_to_train']:
run(
df=train_df,
fold=fold,
tokenizer=tokenizer,
device=config['device'],
resume_training_checkpoint=config['resume_training_checkpoint'],
)
torch.cuda.empty_cache()
gc.collect()