-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathsubpockets_benchmark_all.py
184 lines (170 loc) · 8.32 KB
/
subpockets_benchmark_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
'''Benchmark DeepPocket segmentation model on Zhao. et. al. benchmark. Prints out IOUs and success rates of ratio thresholds for different distances and ratio thresholds'''
from prody import *
import torch
import torch.nn as nn
from unet import Unet
import numpy as np
import logging
import argparse
import wandb
import sys
import os
import molgrid
from skimage.morphology import binary_dilation
from skimage.morphology import cube
from skimage.morphology import closing
from skimage.segmentation import clear_border
from skimage.measure import label
from scipy.spatial.distance import cdist
from rdkit.Chem import AllChem as Chem
from rdkit.Chem import AllChem
def preprocess_output(input, threshold):
input[input>=threshold]=1
input[input!=1]=0
input=input.numpy()
bw = closing(input).any(axis=0)
# remove artifacts connected to border
cleared = clear_border(bw)
# label regions
label_image, num_labels = label(cleared, return_num=True)
largest=0
for i in range(1, num_labels + 1):
pocket_idx = (label_image == i)
pocket_size = pocket_idx.sum()
if pocket_size >largest:
largest=pocket_size
for i in range(1, num_labels + 1):
pocket_idx = (label_image == i)
pocket_size = pocket_idx.sum()
if pocket_size <largest:
label_image[np.where(pocket_idx)] = 0
label_image[label_image>0]=1
return torch.tensor(label_image,dtype=torch.float32)
def get_model_gmaker_eproviders(args):
# test example provider
eptest = molgrid.ExampleProvider(shuffle=False, stratify_receptor=False,iteration_scheme=molgrid.IterationScheme.LargeEpoch,default_batch_size=1,data_root=args.data_dir,recmolcache=args.test_recmolcache)
eptest.populate(args.test_types)
# gridmaker with defaults
gmaker_img = molgrid.GridMaker(dimension=32)
return gmaker_img, eptest
def Output_Coordinates(tensor,center,dimension=16.25,resolution=0.5):
#get coordinates of mask from predicted mask
tensor=tensor.numpy()
indices = np.argwhere(tensor>0).astype('float32')
indices *= resolution
center=np.array([float(center[0]), float(center[1]), float(center[2])])
indices += center
indices -= dimension
return indices
def binding_site_AA(ligand,prot_prody,distance):
#amino acids from ligand distance threshold
prot_coords = prot_prody.getCoords()
c = ligand.GetConformer()
ligand_coords = c.GetPositions()
ligand_dist = cdist(ligand_coords, prot_coords)
binding_indices = np.where(np.any(ligand_dist <= distance, axis=0))
#Get protein residue indices involved in binding site
prot_resin = prot_prody.getResindices()
prot_binding_indices = prot_resin[binding_indices]
prot_binding_indices = sorted(list(set(prot_binding_indices)))
return prot_binding_indices
def predicted_AA(indices,prot_prody,distance):
#amino acids from mask distance thresholds
prot_coords = prot_prody.getCoords()
ligand_dist = cdist(indices, prot_coords)
binding_indices = np.where(np.any(ligand_dist <= distance, axis=0))
#get predicted protein residue indices involved in binding site
prot_resin = prot_prody.getResindices()
prot_binding_indices = prot_resin[binding_indices]
prot_binding_indices = sorted(list(set(prot_binding_indices)))
return prot_binding_indices
def intersection(lst1, lst2):
return list(set(lst1) & set(lst2))
def union(lst1, lst2):
return list(set().union(lst1,lst2))
def parse_args(argv=None):
'''Return argument namespace and commandline'''
parser = argparse.ArgumentParser(description='Train neural net on .types data.')
parser.add_argument('--test_types', type=str, required=True,
help="test types file")
parser.add_argument('--model_weights', type=str, required=True,
help="weights for UNET")
parser.add_argument('-t', '--threshold', type=float, required=False,
help="threshold for segmentation", default=0.5)
parser.add_argument('--upsample', type=str, required=False,
help="Type of Upsampling", default=None)
parser.add_argument('--num_classes', type=int, required=False,
help="Output channels for predicted masks, default 1", default=1)
parser.add_argument('-d', '--data_dir', type=str, required=False,
help="Root directory of data", default="")
parser.add_argument('--test_recmolcache', type=str, required=False,
help="path to test receptor molcache", default="")
args = parser.parse_args(argv)
argdict = vars(args)
line = ''
for (name, val) in list(argdict.items()):
if val != parser.get_default(name):
line += ' --%s=%s' % (name, val)
return (args, line)
def test(model, test_loader, gmaker_img,device, args,ligand_distances,mask_distances,ratios,count_values,IOUS):
with torch.no_grad():
count=0
model.eval()
dims = gmaker_img.grid_dimensions(test_loader.num_types())
tensor_shape = (1,) + dims
#create tensor for input, centers and indices
input_tensor = torch.zeros(tensor_shape, dtype=torch.float32, device=device, requires_grad=True)
float_labels = torch.zeros((1, 4), dtype=torch.float32, device=device)
for batch in test_loader:
# update float_labels with center and index values
batch.extract_labels(float_labels)
centers = float_labels[:, 1:]
for b in range(1):
#get protein and ligand files
protein_file=os.path.join(args.data_dir,batch[b].coord_sets[0].src.replace('.gninatypes','.pdb'))
ligand_file=os.path.join(args.data_dir,batch[b].coord_sets[0].src.replace('protein_nowat.gninatypes','ligand.sdf'))
#load in protein and ligand
ligand=Chem.MolFromMolFile(ligand_file,sanitize=False)
prot_prody=parsePDB(protein_file)
center = molgrid.float3(float(centers[b][0]), float(centers[b][1]), float(centers[b][2]))
# Update input tensor with b'th datapoint of the batch
gmaker_img.forward(center, batch[b].coord_sets[0], input_tensor[b])
# Take only the first 14 channels as that is for proteins, other 14 are ligands and will remain 0.
masks_pred = model(input_tensor[:, :14])
masks_pred=masks_pred.detach().cpu()
masks_pred=preprocess_output(masks_pred[0], args.threshold)
pred_coords = Output_Coordinates(masks_pred, center)
for ld in range(len(ligand_distances)):
true_aa = binding_site_AA(ligand, prot_prody, ligand_distances[ld])
for md in range(len(mask_distances)):
pred_aa = predicted_AA(pred_coords, prot_prody, mask_distances[md])
intersect = intersection(pred_aa, true_aa)
un = union(pred_aa, true_aa)
IOUS[ld][md]+=len(intersect)/len(un)
for r in range(len(ratios)):
if len(intersect)/len(true_aa)>=ratios[r]:
count_values[ld][r][md]+=1
return count_values
if __name__ == "__main__":
ligand_distances=[3,4,5]
ratios=[0.25,0.5,0.75]
mask_distances=[1,1.5,2,2.5,3,3.5]
count_values=np.zeros((len(ligand_distances),len(ratios),len(mask_distances)))
IOUS=np.zeros((len(ligand_distances),len(mask_distances)))
(args, cmdline) = parse_args()
gmaker_img, eptest = get_model_gmaker_eproviders(args)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Unet(args.num_classes, args.upsample)
model.to(device)
checkpoint = torch.load(args.model_weights)
model.cuda()
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state_dict'])
count_values=test(model, eptest, gmaker_img,device,args,ligand_distances,mask_distances,ratios,count_values,IOUS)
count_values/=4414
IOUS/=4414
for ld in range(len(ligand_distances)):
for md in range(len(mask_distances)):
print("ligand distance ", ligand_distances[ld], "mask_distance ", mask_distances[md], "IOU ", IOUS[ld][md])
for r in range(len(ratios)):
print("ligand distance ", ligand_distances[ld], "mask_distance ", mask_distances[md], "ratio ", ratios[r], "value ",count_values[ld][r][md])