forked from openml/automlbenchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frameworks.yaml
220 lines (188 loc) · 7.56 KB
/
frameworks.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
#for doc purpose using <placeholder:default_value> syntax when it applies.
# FORMAT:
__dummy_framework_with_defaults:
version: ''
module: # defaults to `frameworks.framework_name`
setup_args: ''
params: {}
project: http://url/to/project/repo
image: # will result in built image `author/image:tag`
author: automlbenchmark
image: # defaults to `framework name to lowercase`
tag: # defaults to `framework version`
#########################
### AutoML frameworks ###
#########################
AutoGluon:
version: "stable"
description: |
AutoGluon-Tabular: Unlike existing AutoML frameworks that primarily focus on model/hyperparameter selection,
AutoGluon-Tabular succeeds by ensembling multiple models and stacking them in multiple layers.
project: https://auto.gluon.ai
refs: [https://arxiv.org/abs/2003.06505]
# params:
# _save_artifacts: ['leaderboard', 'models', 'info']
AutoGluon_bestquality:
extends: AutoGluon
description: |
AutoGluon with 'best_quality' preset provides the most accurate overall predictor.
params:
presets: best_quality
autosklearn:
version: 'stable'
description: |
auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning.
It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction.
project: https://automl.github.io/auto-sklearn/
refs: [http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf]
# params:
# _save_artifacts: ['models', 'debug_as_files']
# _n_jobs: 1
autosklearn2:
extends: autosklearn
params:
_askl2: true
AutoWEKA:
version: 'stable'
description: |
Auto-WEKA considers the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous methods that address these issues in isolation.
Auto-WEKA does this using a fully automated approach, leveraging recent innovations in Bayesian optimization.
project: https://www.cs.ubc.ca/labs/beta/Projects/autoweka/
refs: [https://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/16-599.pdf]
autoxgboost:
version: 'latest'
description: |
autoxgboost aims to find an optimal xgboost model automatically using the machine learning framework mlr and the bayesian optimization framework mlrMBO.
project: https://github.com/ja-thomas/autoxgboost
refs: [https://arxiv.org/abs/1807.03873v2]
flaml:
version: 'stable'
description: |
FLAML is a lightweight Python library that finds accurate machine learning models
automatically, efficiently and economically. It frees users from selecting learners
and hyperparameters for each learner. It is fast and cheap.
project: https://github.com/microsoft/FLAML
refs: [https://arxiv.org/pdf/1911.04706.pdf]
GAMA:
version: 'stable'
description: |
GAMA tries to find a good machine learning pipeline.
For the machine learning pipeline GAMA considers data preprocessing steps, various machine learning algorithms, and their possible hyperparameters configurations.
project: https://github.com/PGijsbers/gama
refs: [https://joss.theoj.org/papers/10.21105/joss.01132]
H2OAutoML:
version: 'stable'
description: |
H2O AutoML is a highly scalable, fully-automated, supervised learning algorithm
which automates the process of training a large selection of candidate models and stacked ensembles within a singlefunction.
project: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
refs: [https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf]
hyperoptsklearn:
version: 'latest'
description: |
hyperopt-sklearn uses Hyperopt to define a search space that encompasses many standard Scikit-Learn components and common patterns of composing them together.
project: http://hyperopt.github.io/hyperopt-sklearn/
refs: [http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf]
# params:
# max_evals: 1000
# algo: hyperopt.tpe.suggest
# verbose: true
lightautoml:
project: https://github.com/sberbank-ai-lab/LightAutoML
version: 'stable'
description: |
LightAutoML (LAMA) project from Sberbank AI Lab AutoML group is the framework for automatic classification and regression model creation.
mljarsupervised:
version: 'stable'
description: |
AutoML mljar-supervised abstracts the common way to preprocess the data, construct the machine learning models, and perform hyper-parameters tuning to find the best model.
project: https://supervised.mljar.com/
# params:
# algorithms: ["Baseline"]
# _save_artifacts: True
mljarsupervised_compete:
extends: mljarsupervised
description: "MLJAR is using 'Compete' mode to provide the most accurate predictor"
params:
mode: Compete # set mode for Compete, default mode is Explain
MLNet:
version: 'latest'
description: |
MLNET.CLI is a automated machine learning tool implemented by ml.net.
MLPlan:
version: 'stable'
abstract: true
description: |
ML-Plan is an approach to AutoML based on hierarchical task networks (HTNs).
project: http://mlplan.org
refs: [https://doi.org/10.1007/s10994-018-5735-z]
MLPlanSKLearn:
extends: MLPlan
params:
_backend: sklearn
MLPlanWEKA:
extends: MLPlan
params:
_backend: weka
mlr3automl:
version: 'stable'
project: https://github.com/a-hanf/mlr3automl
oboe:
version: 'latest'
description: |
oboe is an AutoML model selection system to select estimators or pipelines for a dataset.
project: https://github.com/udellgroup/oboe
# params:
# build_ensemble: false
# selection_method: random
# verbose: true
TPOT:
version: 'stable'
description: |
TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
project: https://github.com/EpistasisLab/tpot
refs:
- https://academic.oup.com/bioinformatics/article/36/1/250/5511404
- http://doi.acm.org/10.1145/2908812.2908918
# params:
# _save_artifacts: ['models']
# max_eval_time_mins: 2
# population_size: 25
# verbosity: 2
#######################################
### Non AutoML reference frameworks ###
#######################################
constantpredictor:
description: |
Fast dummy classifier mainly used to test the app and/or datasets: this doesn't encode data.
project: https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
DecisionTree:
version: 'stable'
description: |
A simple decision tree implementation (scikit-learn) used for testing or as a reference base.
project: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
RandomForest:
version: 'stable'
description: |
A simple Random Forest implementation (scikit-learn) used for testing or as a reference base.
project: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
params:
n_estimators: 2000
# _n_jobs: 1 # faster, fitter, happier (running OoM on some datasets when using multiprocessing)
# verbose: true
ranger:
version: 'stable'
description: |
A Random Forest implementation on R, mainly used for testing and as an example of R integration.
project: https://github.com/imbs-hl/ranger
TunedRandomForest:
version: 'stable'
description: |
A Tuned Random Forest implementation (scikit-learn) trying to optimize over max_features, and used as a reference base.
project: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
params:
n_estimators: 2000
# _n_jobs: 1 # cf. RandomForest
# _tuning:
# n_estimators: 500