forked from sb-ai-lab/LightAutoML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo0.py
178 lines (147 loc) · 5.3 KB
/
demo0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python
# coding: utf-8
"""Building ML pipeline from blocks and fit + predict the pipeline itself."""
import os
import pickle
import time
import numpy as np
import pandas as pd
from lightautoml.dataset.np_pd_dataset import PandasDataset
from lightautoml.dataset.roles import CategoryRole
from lightautoml.dataset.roles import DatetimeRole
from lightautoml.dataset.roles import FoldsRole
from lightautoml.dataset.roles import NumericRole
from lightautoml.dataset.roles import TargetRole
from lightautoml.dataset.utils import roles_parser
from lightautoml.ml_algo.boost_lgbm import BoostLGBM
from lightautoml.ml_algo.tuning.optuna import OptunaTuner
from lightautoml.pipelines.features.lgb_pipeline import LGBSimpleFeatures
from lightautoml.pipelines.ml.base import MLPipeline
from lightautoml.pipelines.selection.importance_based import ImportanceCutoffSelector
from lightautoml.pipelines.selection.importance_based import (
ModelBasedImportanceEstimator,
)
from lightautoml.tasks import Task
from lightautoml.validation.np_iterators import FoldsIterator
# Read data from file
print("Read data from file")
data = pd.read_csv(
"./data/sampled_app_train.csv",
usecols=[
"TARGET",
"NAME_CONTRACT_TYPE",
"AMT_CREDIT",
"NAME_TYPE_SUITE",
"AMT_GOODS_PRICE",
"DAYS_BIRTH",
"DAYS_EMPLOYED",
],
)
# Fix dates and convert to date type
print("Fix dates and convert to date type")
data["BIRTH_DATE"] = np.datetime64("2018-01-01") + data["DAYS_BIRTH"].astype(np.dtype("timedelta64[D]"))
data["EMP_DATE"] = np.datetime64("2018-01-01") + np.clip(data["DAYS_EMPLOYED"], None, 0).astype(
np.dtype("timedelta64[D]")
)
data.drop(["DAYS_BIRTH", "DAYS_EMPLOYED"], axis=1, inplace=True)
# Create folds
print("Create folds")
data["__fold__"] = np.random.randint(0, 5, len(data))
# Print data head
print("Print data head")
print(data.head())
# # Set roles for columns
print("Set roles for columns")
check_roles = {
TargetRole(): "TARGET",
CategoryRole(dtype=str): ["NAME_CONTRACT_TYPE", "NAME_TYPE_SUITE"],
NumericRole(np.float32): ["AMT_CREDIT", "AMT_GOODS_PRICE"],
DatetimeRole(seasonality=["y", "m", "wd"]): ["BIRTH_DATE", "EMP_DATE"],
FoldsRole(): "__fold__",
}
# create Task
task = Task("binary")
# # Creating PandasDataSet
print("Creating PandasDataset")
start_time = time.time()
pd_dataset = PandasDataset(data, roles_parser(check_roles), task=task)
print("PandasDataset created. Time = {:.3f} sec".format(time.time() - start_time))
# # Print pandas dataset feature roles
print("Print pandas dataset feature roles")
roles = pd_dataset.roles
for role in roles:
print("{}: {}".format(role, roles[role]))
# # Feature selection part
print("Feature selection part")
selector_iterator = FoldsIterator(pd_dataset, 1)
print("Selection iterator created")
model = BoostLGBM()
pipe = LGBSimpleFeatures()
print("Pipe and model created")
model0 = BoostLGBM(
default_params={
"learning_rate": 0.05,
"num_leaves": 64,
"seed": 0,
"num_threads": 5,
}
)
mbie = ModelBasedImportanceEstimator()
selector = ImportanceCutoffSelector(pipe, model0, mbie, cutoff=10)
start_time = time.time()
selector.fit(selector_iterator)
print("Feature selector fitted. Time = {:.3f} sec".format(time.time() - start_time))
print("Feature selector scores:")
print("\n{}".format(selector.get_features_score()))
# # Build AutoML pipeline
print("Start building AutoML pipeline")
pipe = LGBSimpleFeatures()
print("Pipe created")
params_tuner1 = OptunaTuner(n_trials=10, timeout=300)
model1 = BoostLGBM(default_params={"learning_rate": 0.05, "num_leaves": 128})
print("Tuner1 and model1 created")
params_tuner2 = OptunaTuner(n_trials=100, timeout=300)
model2 = BoostLGBM(default_params={"learning_rate": 0.025, "num_leaves": 64})
print("Tuner2 and model2 created")
total = MLPipeline(
[(model1, params_tuner1), (model2, params_tuner2)],
pre_selection=selector,
features_pipeline=pipe,
post_selection=None,
)
print("Finished building AutoML pipeline")
# # Create full train iterator
print("Full train valid iterator creation")
train_valid = FoldsIterator(pd_dataset)
print("Full train valid iterator created")
# # Fit predict using pipeline
print("Start AutoML pipeline fit_predict")
start_time = time.time()
pred = total.fit_predict(train_valid)
print("Fit_predict finished. Time = {:.3f} sec".format(time.time() - start_time))
# # Check preds
print("Preds:")
print("\n{}".format(pred))
print("Preds.shape = {}".format(pred.shape))
# # Predict full train dataset
print("Predict full train dataset")
start_time = time.time()
train_pred = total.predict(pd_dataset)
print("Predict finished. Time = {:.3f} sec".format(time.time() - start_time))
print("Preds:")
print("\n{}".format(train_pred))
print("Preds.shape = {}".format(train_pred.shape))
print("Pickle automl")
with open("automl.pickle", "wb") as f:
pickle.dump(total, f)
print("Load pickled automl")
with open("automl.pickle", "rb") as f:
total = pickle.load(f)
print("Predict loaded automl")
train_pred = total.predict(pd_dataset)
os.remove("automl.pickle")
# # Check preds feature names
print("Preds features: {}".format(train_pred.features))
# # Check model feature scores
print("Feature scores for model_1:\n{}".format(model1.get_features_score()))
print("Feature scores for model_2:\n{}".format(model2.get_features_score()))