-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.sage
71 lines (65 loc) · 1.54 KB
/
solver.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
load("anf.sage")
import os
os.environ["SAGE_NUM_THREADS"] = '9'
def heurestic(F:set): return min(F,key=lambda f:len(f.variables()))
def solve_thread(tup):
F,t = tup
F1 = set({q(quotient(s,t)) for s in F})
if 1 in F1:
F1.remove(1)
Y = solve(F1)
return set({t*y for y in Y})
def q(qu):
if qu == [True]:
return 1
elif qu == [False]:
return 0
else:
return qu[1]
@parallel
def solve_parallel(F,t):
#F1 = set({custom_q_2(s,t) for s in F})
#one=t.variable(0)+t.variable(0)+1
#if one in F1:
# F1.remove(one)
F1 = set({q(quotient(s,t)) for s in F})
if 1 in F1:
F1.remove(1)
Y = solve_2(F1)
return set({t*y for y in Y})
def solve(F2:set):
F_cp=F2.copy()
if 0 in F2:
return set()
elif len(F2) == 1:
return gen_implicant(F_cp.__iter__().__next__())
elif len(F2) == 0:
return set([1])
else:
I=set()
f = heurestic(F_cp)
X = gen_implicant(f)
F_cp.remove(f)
seeds = [(F_cp,t) for t in X]
succ = lambda l: []
S = RecursivelyEnumeratedSet(seeds, succ, structure='forest', enumeration='depth')
map_function = lambda x: solve_thread(x)
reduce_function = lambda x, y: x.union(y)
reduce_init = I
return S.map_reduce(map_function, reduce_function, reduce_init)
def solve_2(F:set):
if 0 in F:
return set()
elif len(F) == 1:
return gen_implicant(F.__iter__().__next__())
elif len(F) == 0:
return set([1])
else:
from datetime import datetime
f = heurestic(F)
X = gen_implicant(f)
F_cp = F.copy()
F_cp.remove(f)
seed = [(F_cp.copy(),t) for t in X]
e=set().union(*[t[-1] for t in list(solve_parallel(seed))])
return e