-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTCcell_old.hoc
executable file
·788 lines (738 loc) · 32 KB
/
TCcell_old.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
/*----------------------------------------------------------------------------
THALAMOCORTICAL (TC) RELAY CELL
=================================
Simulations of a single-compartment model of thalamic relay cell.
The geometric and passive parameters of the model are set to give the
capacitance of the cell <200 pF and twice the size of the NRT single
cell model. The conductances of sodium (I_Naleak) and potasium leak
current (I_Kleak) should be adjusted in order to obtain a range of
input resistances that support various oscillations. The apparent input
resistance is ~160 MOhms and the resting membrane potential is ~-65 mV.
These estimates are average values based on multiple studies carried
out in Crunelli's lab in cats and rats. Mind though that these values
vary largely depending on the age of an animal (for ref. see [1]).
The cell is adapted to be used in parallel network simulations if
necessary.
The following active currents are included in the model (the references
describing the models are provided in the descriptions of model (.mod)
files:
- HH mechanism: fast Na+ I_Na and K+ delayed rectifier I_K(DR)
currents. Required for action potential generation.
- I_T: low voltage-activated Ca2+ T-type current. Required for low-
threshold calcium spikes, rebound bursting, and a number of
oscillations including delta and slow (<1 Hz).
- I_AHP: or I_K[Ca] is a Ca2+-activated K+ current. Significant
only in higher order thalamic relay cells.
- I_h anaomalous rectifier current (hyperpolarisation-activated
non-specific cation current) - an essential pacemaking current
working in cooperation with I_T. Adding I_h Ca2+-dependence
results in waxing-and-waning property of oscillations.
- I_CAN: slow Ca2+ dependent non-specific cation current. This
current is required for expanding the range of intrinsic slow
(<1 Hz) oscillation and smoothing the up-state.
- I_Na(P): persistent low voltage-activated Na+ current; provides
input amplification and increase in the input resistence
contributing to the intrinsic slow oscillation.
- I_A: fast transient voltage activated K+ current.
- I_K1: another significant voltage activated K+ current.
- I_K2: another significant voltage activated K+ current.
- I_HVA: high threshold Ca2+ current. At least 4 distinct types of
channels of this kind in TC cells. Involved in high-threshold
bursts.
- I_AMPA
- I_NMDA
- I_GABAa
- I_GABAb
References:
[1] Lee, S.-C., Cruikshank, S.J., and Connors, B.W. Electrical and
chemical synapses between relay neurons in developing thalamus.
Journal of Physiology, 588: 2403-2415, 2010.
Written by Martynas Dervinis @Cardiff University, 2013.
*notes:
*1 - given enarev = 60, ekrev = -90, diam = 60, L = 90,
g_pas = 0.0000470, e_pas = ekrev, cm = 0.88, Ra = 150,
g_naleak = 0.0000091, e_naleak = 10, depth_cad = 17,
taux_cad = 133, cainf_cad = 50e-6, enaHH_hhT = 30, ek = ekrev,
vtraubNa_hhT = -42, vtraubK_hhT = -38, gnabar_hhT = 0.07,
gkbar_hhT = 0.07, pcabar_itGHK = 8.8e-5, eh = -40,
ghbar_iarg = 0.00012, shift_iarg = -18, ginc_iarg = 2,
cainf_iarg = 50e-6, cac_iarg = 0.000450, k2_iarg = 0.000150,
Pc_iarg = 0.017, k4_iarg = 0.00007, nca_iarg = 4, nexp_iarg = 1,
gkbar1_iahp = 0, gkbar2_iahp = 0, tau_m1_min_iahp = 90,
tau_m2_min_iahp = 830, en = 10, gnbar_ican = 0.000072,
k1_ican = 1e11, k2_ican = 0.01, k3_ican = 0.0015,
k4_ican = 0.0007, gnabar_inap = 0.00001612, shift_inap = 0,
gbar1_ia = 0.000242, gbar2_ia = gbar1_ia*0.663,
gbar_ik1 = 0.000014, gbar_ik2 = 0, pcabar_ihvaTC = 0.00001,
nseg = 1
>> Vrest = -65.06, Ri = 160.77 MOhm with stim.amp = -0.02 nA
Ri = 158.56 MOhm with stim.amp = -0.05 nA
*2 - g_pas = 0.0000512, g_naleak = 0.0000091, pcabar_itGHK = 1.8*8.8e-5,
gkbar1_iahp = 0.000001, gnbar_ican = 0.15*0.000072
>> Vrest = -65.04, Ri = 129.78 MOhm with stim.amp = -0.02 nA
Ri = 135.55 MOhm with stim.amp = -0.05 nA
*3 - given enarev = 60, ekrev = -90, diam = 60, L = 90,
g_pas = 0.00004, e_pas = ekrev, cm = 0.88, Ra = 150,
g_naleak = 0.0000033, e_naleak = 10, depth_cad = 17,
taux_cad = 133, cainf_cad = 50e-6, enaHH_hhT = 30, ek = ekrev,
vtraubNa_hhT = -40, vtraubK_hhT = -40, gnabar_hhT = 0.07,
gkbar_hhT = 0.07, pcabar_itGHK = 8.8e-5, eh = -40,
ghbar_iarg = 0.00012, shift_iarg = -18, ginc_iarg = 2,
cainf_iarg = 50e-6, cac_iarg = 450, k2_iarg = 0.000150,
Pc_iarg = 0.017, k4_iarg = 0.00007, nca_iarg = 4, nexp_iarg = 1,
gkbar1_iahp = 0, gkbar2_iahp = 0, tau_m1_min_iahp = 90,
tau_m2_min_iahp = 830, cac_icanm = 0.00045, beta_icanm = 0.0001,
taumin_icanm = 0.1, en = 0, gbar_icanm = 0.0001,
gnabar_inap = 0.00002015, shift_inap = 0, gbar1_ia = 0.000242,
gbar2_ia = gbar1_ia*0.663, gbar_ik1 = 0.000014,
gbar_ik2 = 0.0002, pcabar_ihvaTC = 0.000135, nseg = 1
>> Vrest = -65.06, Ri = 165.7 MOhm with stim.amp = -0.02 nA
Ri = 134.16 MOhm with stim.amp = -0.05 nA
>> @ -75 mV, Ri = 43.69 MOhm with stim.amp = -0.02 nA
----------------------------------------------------------------------------*/
begintemplate TCcell
public soma, gid, devRi, enarev, ekrev, input, is_art
public createSyn, getSyn, getSynList, connect2target
public createMini, getMini, connectMini, inserted, rcount, rlist
external varDt, randomise, globalIndex, min, lambda_f, state
objref AMPAsyn, GLUsyn, GLUfullsyn, GABAAsyn, GABAsyn, GABAfullsyn
objref AMPAsynList, GLUsynList, GLUfullsynList, GABAAsynList, GABAsynList, GABAfullsynList, synList
objref AMPAmini, GABAAmini, minisList, rlist, input, inserted
strdef section
create soma
proc init() {
gid = $1
devRi = $2
section = $s3
insertNil = 1
insertExC = 1
insertHH = 1
insertIT = 1
insertIAHP = 1
insertIh = 1
insertICAN = 1
insertINaP = 1
insertIA = 1
insertIK1 = 1
insertIK2 = 1
insertIHVA = 1
inserted = new Vector(13)
AMPAsynList = new List()
GLUsynList = new List()
GLUfullsynList = new List()
GABAAsynList = new List()
GABAsynList = new List()
GABAfullsynList = new List()
synList = new List()
minisList = new List()
rlist = new List()
input = new List()
input.append(synList)
input.append(minisList)
rcount = 0
enarev = 60
ekrev = -90
GABAarev = -70
soma {
diam = 60
L = 90
}
if (insertNil) {
forall {
insert pas // Passive properties and K+ leak current
inserted.x[0] = 1
g_pas = 0 //0.00004
e_pas = ekrev
cm = 0.88
Ra = 150
insert naleak // Na+ leak current
inserted.x[1] = 1
g_naleak = 0 //0.0000033
e_naleak = 10
insert cad // Intracellular [Ca2+] decay
inserted.x[2] = 1
depth_cad = 17
taux_cad = 133
cainf_cad = 50e-6
insert cadhva // Intracellular [Ca2+] decay
depth_cadhva = 17
taux_cadhva = 133
cainf_cadhva = 0e-6
}
}
if (insertExC && !varDt) {
forall {
insert extracellular // Extracellular fields for monitoring total membrane current
inserted.x[3] = 1
}
}
if (insertHH) {
soma { // HH mechanism
insert hhT
inserted.x[4] = 1
enaHH_hhT = 30
ek = ekrev
vtraubNa_hhT = -40 // the action potential threshold of the HH mechanism: -65.5
vtraubK_hhT = -40
gnabar_hhT = 0.07 // 0.000823 @ vtraub = -45: 2.313 nA, 0.000564 @ vtraub = -70: 2.315 (max: 2.314 nA)
gkbar_hhT = 0.07 // possible working sets: -45 0.045 0.022; -38 0.04 0.017; 30 -42 -38: 0.07 0.07
}
}
if (insertIT) {
forall {
// VB:
/* insert itGHK // LVA I_T[Ca] with GHK equations
inserted.x[5] = 1
if (!strcmp(section, "FO")) {
pcabar_itGHK = 8.8e-5 // 1.8-8.8: 2-10nA; 10e-5: 11.39nA; 11e-5: 12.53nA;
} else if (!strcmp(section, "HO")) {
pcabar_itGHK = 1.5*8.8e-5 //[1.1 1.8]*8.8e-5
}
mshift_itGHK = 0
hshift_itGHK = 0
tau_m_min_itGHK = 0
tau_h_min_itGHK = 0
adj_itGHK = 0
km_itGHK = 6.2
kh_itGHK = 4 */
// LGN:
insert it
inserted.x[5] = 1
if (!strcmp(section, "FO")) {
gcabar_it = 0.00144 // 0.0004-0.0021: 2-10nA; max 0.00144, if adj = 1; max 0.000985, if adj = 1, m_shift_it = 3, h_shift_it = 3
} else if (!strcmp(section, "HO")) {
gcabar_it = 0.00144
}
adj_it = 1
tau_m_min_it = 0
tau_h_min_it = -2 //0
m_shift_it = 3
h_shift_it = 3
}
}
if (insertIh) {
forall {
/*insert iarreg // I_h (Na+/K+) current
inserted.x[6] = 1
eh = -40 // reversal potential
ghbar_iarreg = 0.00012 // Max: 0.00061 (2.6 nA), 0.00047 (2 nA), 0.00012 (0.5 nA), Min: 0.000055 (0.233 nA); 0.000012 (0.051 nA).
shift_iarreg = -18 */
insert iarg
inserted.x[6] = 1
eh = -40
if (!strcmp(section, "FO")) {
ghbar_iarg = 0.000055
if (!strcmp(state,"none")) {
shift_iarg = 0
cac_iarg = 1e9 //0.000750
} else if (!strcmp(state,"delta_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"delta_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"slow_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"slow_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"spindles_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"spindles_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"SWDs_short")) {
shift_iarg = -28 // SWDs: -28; else: 0. Min: -28
cac_iarg = 0.000750
} else if (!strcmp(state,"SWDs_long")) {
shift_iarg = -28
cac_iarg = 0.001400 // Min: 0.001400. IT-mediated Ca2+ influxes associated with SWCs are in the range of ~600-700 uM
} else if (!strcmp(state,"wake_short")) {
shift_iarg = -28
cac_iarg = 0.000750
} else if (!strcmp(state,"wake_long")) {
shift_iarg = -28
cac_iarg = 0.001400
}
nca_iarg = 8
ginc_iarg = 2
} else if (!strcmp(section, "HO")) {
ghbar_iarg = 0.000055
if (!strcmp(state,"none")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"delta_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"delta_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"slow_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"slow_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"spindles_short")) {
shift_iarg = 0
cac_iarg = 0.000750
} else if (!strcmp(state,"spindles_long")) {
shift_iarg = 0
cac_iarg = 0.001400
} else if (!strcmp(state,"SWDs_short")) {
shift_iarg = -10 // SWDs: -10; else: 0. Min: -28
cac_iarg = 0.000750
} else if (!strcmp(state,"SWDs_long")) {
shift_iarg = -10
cac_iarg = 0.001400 // Min: 0.001400. IT-mediated Ca2+ influxes associated with SWCs are in the range of ~650-780 uM
} else if (!strcmp(state,"wake_short")) {
shift_iarg = -10
cac_iarg = 0.000750
} else if (!strcmp(state,"wake_long")) {
shift_iarg = -10
cac_iarg = 0.001400
}
nca_iarg = 8
ginc_iarg = 2
}
k2_iarg = 0.000150
Pc_iarg = 0.017
k4_iarg = 0.00007
nexp_iarg = 1
tau_min_iarg = 20
}
}
if (insertICAN) {
forall {
/* insert ican // Nonspecific cation current I_CAN
inserted.x[7] = 1
en = 10
if (!strcmp(section, "FO")) {
gnbar_ican = 0.000005 // (hh, itGHK, iar): 0.00011, 1e11, 0.01, 0.0015, 0.0007
} else if (!strcmp(section, "HO")) { // fast: gnbar_ican = 0.000016, 1e11, 0.01, 0.25, 0.0123
gnbar_ican = 0.000005 // Hughes et al. (2002) used parameters of 1.25e7, 2e4, 0.075, 0.00075
}
k1_ican = 1e11
k2_ican = 0.01
k3_ican = 0.0015
k4_ican = 0.0007 */
/* insert icand // nonspecific cation current ICAN
beta_icand = 0.0001
taumin_icand = 0.1
en = 0
gbar_icand = 0.0003
cac_icand = 0.0009 //0.00045 */
insert icanmTC // nonspecific cation current ICAN
cac_icanmTC = 0.00045
beta_icanmTC = 0.0001
taumin_icanmTC = 0.1
inact_icanmTC = 1
tau_hCa_min_icanmTC = 0.1
en = 0
if (!strcmp(state,"delta_long") || !strcmp(state,"slow_long") || !strcmp(state,"spindles_long") || !strcmp(state,"SWDs_long") || !strcmp(state,"wake_long")) {
gbar_icanmTC = 0.0001
} else {
gbar_icanmTC = 0.75*0.0001 //0.25*0.0001
}
}
}
if (insertINaP) {
soma { // I_Na(P) Na+ low threshold persistent current
insert inap
inserted.x[8] = 1
gnabar_inap = 0.00002015
shift_inap = 0 // ranges from -3 to 3
}
}
if (insertIA) {
forall {
insert ia // I_A
inserted.x[9] = 1
gbar1_ia = 0.000242 // 0.000242: ~7.6 nA (max)
gbar2_ia = gbar1_ia*0.663
}
}
if (insertIK1) {
forall {
insert ik1 // I_K1
inserted.x[10] = 1
gbar_ik1 = 0.000014 // 0.000014: 307.2 pA (max: 326.8 pA)
}
}
if (insertIK2) {
forall {
insert ik2 // I_K2
inserted.x[11] = 1
gbar_ik2 = 0.0002 // 0.0001: 2.102 nA. 0.0002: 3.93 nA. Max: 4.248 nA
}
}
if (insertIHVA) {
forall {
insert ihvaTC // I_HVA[Ca]
inserted.x[12] = 1
pcabar_ihvaTC = 0.000135 // 0.000135: 4.353 nA (max: 4.38 nA); 0.000062: 2 nA (1.627 nA when shift = 15)
adj_ihvaTC = 1
}
}
//forall nseg = int((L/(0.1*lambda_f(100))+0.9)/2)*2 + 1 // Lambda rule
forall nseg = 1
}
obfunc connect2target() {localobj nc //$o1 - target process, $2 - connection delay, $3 - connection weight
soma nc = new NetCon(&v(0.5), $o1)
nc.threshold = -14.5
nc.delay = $2
nc.weight = $3
return nc
}
obfunc connectMini() {localobj nc //$s1 - type of synapse, $2 - connection delay, $3 - connection weight
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLUfull")) {
nc = new NetCon(AMPAmini, AMPAsyn)
} else if (!strcmp($s1,"GLU")) {
nc = new NetCon(AMPAmini, GLUsyn)
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA")) {
nc = new NetCon(GABAAmini, GABAAsyn)
}
nc.delay = $2
nc.weight = $3
return nc
}
proc createAMPAsyn() {localobj r // $1 - release probability
soma AMPAsyn = new AMPA_S(0.5)
AMPAsyn.gbar = 0.04
AMPAsyn.Alpha = 10
AMPAsyn.Beta = 3
AMPAsyn.Cmax = 0.5
AMPAsyn.Cdur = 0.3
AMPAsyn.Erev = 0
if (randomise.x[5]) {
AMPAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
AMPAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
AMPAsynList.append(AMPAsyn)
synList.append(AMPAsyn)
}
proc createGLUsyn() {localobj r // $1 - release probability
soma GLUsyn = new GLU_S2(0.5)
GLUsyn.gbar_a = 0.034 // 0.4mV, 0.7ms, 26.2ms: 0.04, 10, 3, 0.5, 0.3, 0, 0.85, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0.85
GLUsyn.Alpha_a = 10
GLUsyn.Beta_a = 3
GLUsyn.Cmax_a = 0.5
GLUsyn.Cdur_a = 0.3
GLUsyn.Erev_a = 0
GLUsyn.weight_a = 1
GLUsyn.d1 = 1
GLUsyn.tau_D1 = 1200
GLUsyn.tau1_init_b = 3
GLUsyn.a2_b = 2.2364
GLUsyn.tau2_0_b = 25.057
GLUsyn.a3_b = 43.495
GLUsyn.tau3_0_b = 232.27
GLUsyn.tauAdj_b = 1
GLUsyn.gf_b = 0.0003
GLUsyn.Mg_b = 0.5
GLUsyn.weight_b = 1
if (randomise.x[5]) {
GLUsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GLUsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GLUsynList.append(GLUsyn)
synList.append(GLUsyn)
}
proc createGLUfullsyn() {localobj r // $1 - release probability
soma GLUfullsyn = new GLU_S3(0.5)
GLUfullsyn.gbar_a = 0.034 // 0.4mV, 0.7ms, 26.2ms: 0.034, 10, 3, 0.5, 0.3, 0, 1, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0.85
GLUfullsyn.Alpha_a = 10
GLUfullsyn.Beta_a = 3
GLUfullsyn.Cmax_a = 0.5
GLUfullsyn.Cdur_a = 0.3
GLUfullsyn.Erev_a = 0
GLUfullsyn.weight_a = 1
GLUfullsyn.tau1_init_b = 3
GLUfullsyn.a2_b = 2.2364
GLUfullsyn.tau2_0_b = 25.057
GLUfullsyn.a3_b = 43.495
GLUfullsyn.tau3_0_b = 232.27
GLUfullsyn.tauAdj_b = 1
GLUfullsyn.gf_b = 0.0003
GLUfullsyn.Mg_b = 0.5
GLUfullsyn.weight_b = 0.1 //1
if (!strcmp(section, "FO")) {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.0015
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0016 //0.0015 //Slow: 0.001-0.0012; Spindles:0.000875; SWDs:0.00049; Wake:0.00046
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0012
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.000775
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.000875
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.000775
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.00052
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.00049
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.00049
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.00046
}
GLUfullsyn.gbase_c = GLUfullsyn.gbase_c + 0.000001*devRi
GLUfullsyn.gbar_c = min(0.0017, (GLUfullsyn.gbase_c/0.0012)*0.0017)
} else if (!strcmp(section, "HO")) {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.0015
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0016 //0.0015 //Slow: 0.001-0.0012; Spindles:0.000875; SWDs:0.0008; Wake:0.0008
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0012
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.000775
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.000875
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.000775
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.0008
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.0008
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.0008
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.0008
}
GLUfullsyn.gbase_c = GLUfullsyn.gbase_c + 0.000001*devRi
if (!strcmp(state,"delta_long") || !strcmp(state,"slow_long") || !strcmp(state,"spindles_long") || !strcmp(state,"SWDs_long") || !strcmp(state,"wake_long")) {
GLUfullsyn.gbar_c = min(0.0017, (GLUfullsyn.gbase_c/0.000775)*0.0017)
} else {
GLUfullsyn.gbar_c = min(0.0017, (GLUfullsyn.gbase_c/0.0012)*0.0017)
}
}
GLUfullsyn.K1_c = 0.05 // (/ms mM) forward binding rate to receptor
GLUfullsyn.K2_c = 0.002 //0.0001 // (/ms) backward (unbinding) rate of receptor
GLUfullsyn.K3_c = 0.03 // (/ms) rate of G-protein production
GLUfullsyn.K4_c = 0.03 // (/ms) rate of G-protein decay
GLUfullsyn.KD_c = 0.0001 // dissociation constant of K+ channel
GLUfullsyn.n_c = 4 // nb of binding sites of G-protein on K+
GLUfullsyn.Erev_c = ekrev // (mV) reversal potential (E_K)
GLUfullsyn.Cmax_c = 0.5 // short pulses
GLUfullsyn.Cdur_c = 1.4
GLUfullsyn.weight_c = 1
if (randomise.x[5]) {
GLUfullsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GLUfullsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GLUfullsynList.append(GLUfullsyn)
synList.append(GLUfullsyn)
soma.g_pas = 0
}
proc createGABAAsyn() {localobj r // $1 - release probability
soma GABAAsyn = new GABAa_S(0.5)
GABAAsyn.gbar = 1 // 1.52mV, 2.6ms, 17.9ms: 1, 0.05, 2, 0.5, 1.4, -80, 1
GABAAsyn.Alpha = 0.05
GABAAsyn.Beta = 2
GABAAsyn.Cmax = 0.5
GABAAsyn.Cdur = 1.4
GABAAsyn.Erev = GABAarev // see Pinault et al. (2003)
if (randomise.x[5]) {
GABAAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAAsynList.append(GABAAsyn)
synList.append(GABAAsyn)
}
proc createGABAsyn() {localobj r // $1 - release probability
soma GABAsyn = new GABA_S(0.5)
GABAsyn.gbar_a = 1 // 1.52mV, 2.6ms, 17.9ms: 1, 0.05, 2, 0.5, 1.4, -80, 1
GABAsyn.Alpha_a = 0.05
GABAsyn.Beta_a = 2
GABAsyn.Cmax_a = 0.5
GABAsyn.Cdur_a = 1.4
GABAsyn.Erev_a = GABAarev // see Pinault et al. (2003)
GABAsyn.weight_a = 1
GABAsyn.gbar_b = 0.61 // 0.61, 0.2, 0.0028, 0.28, 0.45, 100, 4, -90, 0.5, 1.4: -2.9956 mV, 108.77 ms, 82.72 ms (in response to a burst)
GABAsyn.K1_b = 0.2 // (/ms mM) forward binding rate to receptor
GABAsyn.K2_b = 0.0028 // (/ms) backward (unbinding) rate of receptor
GABAsyn.K3_b = 0.28 // (/ms) rate of G-protein production
GABAsyn.K4_b = 0.45 // (/ms) rate of G-protein decay
GABAsyn.KD_b = 100 // dissociation constant of K+ channel
GABAsyn.n_b = 4 // nb of binding sites of G-protein on K+
GABAsyn.Erev_b = ekrev // (mV) reversal potential (E_K)
GABAsyn.Cmax_b = 0.5 // short pulses
GABAsyn.Cdur_b = 1.4
if (randomise.x[5]) {
GABAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAsynList.append(GABAsyn)
synList.append(GABAsyn)
}
proc createGABAfullsyn() {localobj r // $1 - release probability
soma GABAfullsyn = new GABA_S2(0.5)
if (!strcmp(section, "FO")) {
GABAfullsyn.gbar_a = 1 // 1.52mV, 2.6ms, 17.9ms: 1, 0.05, 2, 0.5, 1.4, -80, 1
} else if (!strcmp(section, "HO")) {
GABAfullsyn.gbar_a = 1
}
GABAfullsyn.Alpha_a = 0.05
GABAfullsyn.Beta_a = 2
GABAfullsyn.Cmax_a = 0.5
GABAfullsyn.Cdur_a = 1.4
GABAfullsyn.Erev_a = -80 //GABAarev // see Pinault et al. (2003)
GABAfullsyn.weight_a = 1
if (!strcmp(section, "FO")) {
GABAfullsyn.gbar_b = 6*9*8.87*0.61 // 0.61, 0.2, 0.0028, 0.28, 0.45, 100, 4, -90, 0.5, 1.4: -2.9956 mV, 108.77 ms, 82.72 ms (in response to a burst)
// 0.00061, 0.2, 0.0028, 0.28, 0.045, 100, 4, -90, 0.5, 1.4
} else if (!strcmp(section, "HO")) {
GABAfullsyn.gbar_b = 6*9*8.87*0.61
}
GABAfullsyn.K1_b = 0.2 // (/ms mM) forward bindin0.1*0.61g rate to receptor
GABAfullsyn.K2_b = 0.0028 // (/ms) backward (unbinding) rate of receptor
GABAfullsyn.K3_b = 0.28 // (/ms) rate of G-protein production
GABAfullsyn.K4_b = 0.45 // (/ms) rate of G-protein decay
GABAfullsyn.KD_b = 100 // dissociation constant of K+ channel
GABAfullsyn.n_b = 8 //4 // nb of binding sites of G-protein on K+
GABAfullsyn.Erev_b = ekrev // (mV) reversal potential (E_K)
GABAfullsyn.Cmax_b = 0.5 // short pulses
GABAfullsyn.Cdur_b = 1.4
GABAfullsyn.gbar_c = 0 // *0.6 (koefWeiTC)
GABAfullsyn.K1_c = 0.05 // (/ms mM) forward binding rate to receptor
GABAfullsyn.K2_c = 0.005 // (/ms) backward (unbinding) rate of receptor
GABAfullsyn.K3_c = 0.03 // (/ms) rate of G-protein production
GABAfullsyn.K4_c = 0.03 // (/ms) rate of G-protein decay
GABAfullsyn.KD_c = 0.0001 // dissociation constant of K+ channel
GABAfullsyn.n_c = 2 // nb of binding sites of G-protein on K+
GABAfullsyn.Erev_c = -70 // (mV)
GABAfullsyn.Cmax_c = 0.5 // short pulses
GABAfullsyn.Cdur_c = 1.4
GABAfullsyn.weight_c = 1
if (randomise.x[5]) {
GABAfullsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAfullsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAfullsynList.append(GABAfullsyn)
synList.append(GABAfullsyn)
}
proc createSyn() { // $s1 - the synapse type, $2 - release probability.
if (!strcmp($s1,"AMPA")) {
createAMPAsyn($2)
} else if (!strcmp($s1,"GLU")) {
createGLUsyn($2)
} else if (!strcmp($s1,"GLUfull")) {
createGLUfullsyn($2)
} else if (!strcmp($s1,"GABAa")) {
createGABAAsyn($2)
} else if (!strcmp($s1,"GABA")) {
createGABAsyn($2)
} else if (!strcmp($s1,"GABAfull")) {
createGABAfullsyn($2)
}
}
obfunc getSyn() {localobj syn // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
syn = AMPAsyn
} else if (!strcmp($s1,"GLU")) {
syn = GLUsyn
} else if (!strcmp($s1,"GLUfull")) {
syn = GLUfullsyn
} else if (!strcmp($s1,"GABAa")) {
syn = GABAAsyn
} else if (!strcmp($s1,"GABA")) {
syn = GABAsyn
} else if (!strcmp($s1,"GABAfull")) {
syn = GABAfullsyn
}
return syn
}
obfunc getSynList() {localobj list // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
list = AMPAsynList
} else if (!strcmp($s1,"GLU")) {
list = GLUsynList
} else if (!strcmp($s1,"GLUfull")) {
list = GLUfullsynList
} else if (!strcmp($s1,"GABAa")) {
list = GABAAsynList
} else if (!strcmp($s1,"GABA")) {
list = GABAsynList
} else if (!strcmp($s1,"GABAfull")) {
list = GABAfullsynList
} else {
list = synList
}
return list
}
proc createMini() {localobj mini, r // $s1 - the synapse type, $2 - number of input streams.
mini = new minis()
mini.noise = 1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.negexp(1)
mini.noiseFromRandom(r)
rlist.append(r)
rcount += 1
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU") || !strcmp($s1,"GLUfull")) {
mini.interval1 = 1*150*$2
mini.interval2 = 1*75*$2
AMPAmini = mini
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA") || !strcmp($s1,"GABAfull")) {
mini.interval1 = 1*300*$2
mini.interval2 = 1*150*$2
GABAAmini = mini
}
minisList.append(mini)
}
obfunc getMini() {localobj mini // $s1 - the synapse type
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU") || !strcmp($s1,"GLUfull")) {
mini = AMPAmini
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA") || !strcmp($s1,"GABAfull")) {
mini = GABAAmini
}
return mini
}
func is_art() { return 0 }
endtemplate TCcell