-
Notifications
You must be signed in to change notification settings - Fork 1
/
ITGHK.mod
executable file
·154 lines (136 loc) · 4.46 KB
/
ITGHK.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
TITLE Low voltage-activated T-type Ca2+ current in thalamocortical cells
COMMENT
Ca2+ current responsible for low threshold spikes (LTS)
The model is based on [1] and its implementation is taken from [2]. The
kinetics is described by Goldman-Hodgkin-Katz equations, using an m2h
format, according to the voltage-clamp data (whole cell patch clamp) of
[3]. The temperature dependence is taken from [4]. In addition, the
model is extended to include an adjusted activation time constant
required in case when the window current is increased in order to
reduce the subthreshold oscillations.
The model includes:
- mshift parameter for shifting voltage dependcies related to the
activation of the system
- hshift parameter for shifting voltage dependcies related to the
inactivation of the system
- SDfactor parameter for adjusting the tau_m constant
References:
[1] Huguenard, J.R., and McCormick, D.A. Simulation of the currents
involved in rhythmic oscillations in thalamic relay neurons. Jounal
of Neurophysiology, 68: 1373-1383, 1992.
[2] Destexhe, A., Neubig, M., Ulrich, D., and Huguenard, J.R. Dendritic
low-threshold calcium currents in thalamic relay cells. Journal of
Neuroscience, 18: 3574-3588, 1998.
[3] Huguenard, J.R., and Prince, D.A. A Novel T-type Current Underlies
Prolonged Ca2+-dependent Burst Firing in GABAergic Neurons of Rat
Thalamic Reticular Nucleus. Journal of Neuroscience, 12: 3804-3817,
1992.
[4] Coulter, D.A., Huguenard, J.R., and Prince, D.A. Calcium currents
in rat thalamocortical relay neurons: Kinetic properties of the
transient, low-threshold current. Journal of Physiology, 414:
587-604, 1989.
Written by Martynas Dervinis @Cardiff University, 2013.
ENDCOMMENT
NEURON {
SUFFIX itGHK
USEION ca READ cai, cao WRITE ica
RANGE pcabar, m_inf, km, tau_m, tau_m_min, tau_m_mean, tau_m_peak, mshift, adj
RANGE h_inf, kh, tau_h, tau_h_min, hshift
}
UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 35 (degC)
pcabar = 8.8e-5 (cm/s) : maximum permeability of the 1st population of channels
mshift = 0 (mV) : shift of activation steady state
hshift = 0 (mV) : shift of inactivation steady state
km = 6.2
kh = 4
cai = 50e-6 (mM)
cao = 1.5 (mM)
tau_m_min = 0
tau_h_min = 0
adj = 0
tau_m_mean = -55
tau_m_peak = 20
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
m_inf
tau_m (ms)
h_inf
tau_h (ms)
phi
}
BREAKPOINT {
SOLVE states METHOD cnexp
ica = pcabar * m^2*h * ghk(v, cai, cao)
}
DERIVATIVE states {
gating(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
phi = 3 ^ ((celsius-24)/10)
gating(v)
m = m_inf
h = h_inf
}
PROCEDURE gating(v(mV)) {
: Comment left from the previous implementation of the model by Alain
: Destexhe:
: - The activation functions were estimated by John Huguenard. The
: V_1/2 were of -57 and -81 in the vclamp simulations, and -60 and
: -84 in the current clamp simulations.
:
: The activation function were empirically corrected in order to
: account for the contamination of inactivation. Therefore the
: simulations using these values reproduce more closely the voltage
: clamp experiments.
:
: (cfr. Huguenard & McCormick, J Neurophysiol, 1992).
:
m_inf = 1.0 / ( 1 + exp(-(v-mshift+57)/km) )
h_inf = 1.0 / ( 1 + exp((v-hshift+81)/kh) )
if (adj) {
if (v <= tau_m_mean) {
tau_m = 3.5 + (tau_m_peak-3.5)*exp(-((v-tau_m_mean)^2)/(2*5^2))
} else {
tau_m = 0.5 + (tau_m_peak-0.5)*exp(-((v-tau_m_mean)^2)/(2*5^2))
}
} else {
tau_m = tau_m_min + ( 0.612 + 1.0 / ( exp(-(v-mshift+132)/16.7) + exp((v-mshift+16.8)/18.2) ) ) / phi
}
if( (v-hshift) < -80) {
tau_h = tau_h_min + (exp((v-hshift+467)/66.6)) / phi
} else {
tau_h = tau_h_min + ( 28 + exp(-(v-hshift+22)/10.5) ) / phi
}
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
eco = co*efun(z)
eci = ci*efun(-z)
ghk = (.001)*2*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
UNITSON