-
Notifications
You must be signed in to change notification settings - Fork 1
/
Cx3cell.hoc
executable file
·804 lines (725 loc) · 30 KB
/
Cx3cell.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/*----------------------------------------------------------------------------
CORTICAL EXCITATORY CELL #3
=================================
Simulations of a double-compartment model of a cortical excitatory cell.
This model cell is used in the thalamocortical network model. It is
based on earlier cortical cell models outlined in [1] and [2].
Important additional membrane current, like I_h and I_K[Na], were
incorporated into the model in order to reproduce intrinsic oscillatory
behaviour observed in [3] and the involvement of I_K[Na] in the
termination of the slow oscillation [4].
The model consists of two, dendritic and axo-somatic, compartments
coupled via resistance, kappa, and related via the ratio of the
membrane surface areas, rho. The cell may have a different membrane
potential response depending on the values of these parameters. Hence,
it may be classed as regular-spiking (RS), intrinsically bursting (IB),
or fast-spiking (FS). For more details see ref. [1].
The cell is adapted to be used in parallel network simulations if
necessary.
The following active currents are included in the model (the references
describing the models are provided in the descriptions of the model
(.mod) files:
- HH mechanism: fast Na+ I_Na and K+ delayed rectifier I_K(DR)
currents. Required for action potential generation.
- I_A: fast A-type K+ current.
- I_M: slow non-inactivating muscarine-sensitive K+ current.
- I_K[Ca]: Ca2+-activated K+ current.
- I_K[Na]: Na+-activated K+ current.
- I_HVA: high threshold calcium current.
- I_h: anaomalous rectifier current (hyperpolarisation-activated
non-specific cation current).
- I_Na(P): persistent low voltage-activated Na+ current.
- I_AMPA
- I_NMDA
- I_GABAa
- I_GABAb
Optional currents:
- I_AR: outward rectifier K+ current.
Input:
$1 - a type of the cell: 8 - default Cx3 cell;
9 - single RS cell;
10 - single IB cell2;
11 - single RIB cell;
12 - pacemaker cell;
13 - single FS cell.
$2 - a global identifier.
References:
[1] Mainen, Z.F. and Sejnowski, T.J. Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature, 382: 363-
366, 1996.
[2] Timofeev, I., Bazhenov, G.M., Sejnowski, T.J., and Steriade, M.
Origin of Slow Cortical Oscillations in Deafferented Cortical Slabs.
Cerebral Cortex, 10: 1185-1199, 2000.
[3] Lőrincz, M.L., Gunner, D., Bao, Y., Hughes, S.W., and Crunelli, V.
A distinct class of slow (~0.2-2 Hz) bursting layer 5 pyramidal
neurons determine UP/DOWN state dynamics in the neocortex.
In preparation.
[4] Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J.,
Davies, C.H., Jones, R.S., Traub, R.D., and Whittington, M.A.
Neuronal metabolism governs cortical network response state.
PNAS, 103: 5597-5601, 2006.
Written by Martynas Dervinis @Cardiff University, 2014.
*notes:
*1 - given enarev = 60, ekrev = -90, ecarev = 140, rho = 158
forall { g_pas = 0.000026425, e_pas = ekrev, cm = 0.75,
g_naleak = 0.0000078, e_naleak = 10, nseg = 1 }
soma { diam = 5.644, L = 5.644, depth_nad = 2.5, taux_nad = 500,
ena = enarev, ek = ekrev, gnabar_hhCx = 3, gkbar_hhCx = 0.216,
gkbar_iknaCx3 = 0.00007, gnabar_inapCx2 = 0.000077 }
dend { diam = soma.diam, L = rho*soma.L, depth_cad = 2.5,
taux_cad = 200, cainf_cad = 50e-6, depth_nad = 2.5,
taux_nad = 1000, ena = enarev, ek = ekrev, gnabar_hhCx = 0.0015,
gkbar_hhCx = 0, gkbar_ikf = 0.00148, gkbar_im = 0.00001,
ekb = ekrev, cac2_iahp = 0.00032, power_iahp = 5.3,
gkbar1_iahp = 0, gkbar2_iahp = 0, tau_m2_min_iahp = 830,
gkbar_ikca = 0.015, gkbar_iknaCx3 = 0.00007, ghbar_iarCx3 = 0,
gcabar_ihvaCx = 0.000001, gnabar_inapCx2 = 0.000077 }
>> Vrest = -71.5 mV, Ri = 264.2 with stim.amp = -0.02 nA @ -60 mV
Ri = 140.45 with stim.amp = -0.02 nA @ Vrest
tau = 15.05 ms @ Vrest
*2 - g_pas = 0.000027425, ghbar_iarCx3 = 0.0001
>> Vrest = -65.3 mV, Ri = 144.93 with stim.amp = -0.02 nA @ -60 mV
Ri = 67.41 with stim.amp = -0.02 nA @ Vrest
tau = 9.92 ms @ Vrest
*3 - rho = 160, g_pas = 0.000028925, ghbar_iarCx3 = 0,
gkbar_ikca = 0.015, gcabar_ihvaCx = 0.00001
>> Vrest = -72.8 mV, Ri = 237.05 with stim.amp = -0.02 nA @ -60 mV
Ri = 131.47 with stim.amp = -0.02 nA @ Vrest
tau = 15.54 ms @ Vrest
*4 - rho = 200
>> Vrest = -72.7 mV, Ri = 193.1 with stim.amp = -0.02 nA @ -60 mV
Ri = 109.78 with stim.amp = -0.02 nA @ Vrest
tau = 13.69 ms @ Vrest
*5 - rho = 165, g_pas = 0.000027425, gkbar_ikca = 0.009,
gcabar_ihvaCx = 0.000034, ghbar_iarCx3 = 0.0003
>> Vrest = -61.5 mV, Ri = 81.34 with stim.amp = -0.02 nA @ -60 mV
Ri = 63.08 with stim.amp = -0.02 nA @ Vrest
tau = 10.27 ms @ Vrest
*6 - rho = 120, g_pas = 0.000026425, gkbar_ikca = 0.0015,
gcabar_ihvaCx = 0.000001, ghbar_iarCx3 = 0, gnabar_inapCx2 = 0
>> Vrest = -72.1 mV, Ri = 188.36 with stim.amp = -0.02 nA @ -60 mV
Ri = 167.63 with stim.amp = -0.02 nA @ Vrest
tau = 14.68 ms @ Vrest
*7 - rho = 163.8, g_pas = 0.000028925, ghbar_iarCx3 = 0,
gkbar_ikca = 0.015, gcabar_ihvaCx = 0.00001
>> Vrest = -72.8 mV, Ri = 233.32 with stim.amp = -0.02 nA @ -60 mV
Ri = 128.92 with stim.amp = -0.02 nA @ Vrest
tau = 15.5 ms @ Vrest
*8 - rho = 170
>> Vrest = -72.8 mV, Ri = 224.01 with stim.amp = -0.02 nA @ -60 mV
Ri = 125 with stim.amp = -0.02 nA @ Vrest
tau = 15.45 ms @ Vrest
*9 - rho = 195
>> Vrest = -72.74 mV, Ri = 198.4 with stim.amp = -0.02 nA @ -60 mV
Ri = 111.95 with stim.amp = -0.02 nA @ Vrest
tau = 13.67 ms @ Vrest
----------------------------------------------------------------------------*/
begintemplate Cx3cell
public soma, dend, gid, enarev, ekrev, ecarev, rho, rlist, input, is_art
public createSyn, getSyn, getSynList, connect2target
public createMini, getMini, connectMini, inserted, rcount, rlist
external varDt, randomise, globalIndex, max, lambda_f, state
objref AMPAsyn, GLUsyn, GABAAsyn, GABAsyn
objref AMPAsynList, GLUsynList, GABAAsynList, GABAsynList, synList
objref AMPAmini, GABAAmini, minisList, rlist, input, inserted
create soma, dend
proc init() {
modelType = $1
gid = $2
insertNil = 1
insertExC = 1
insertHH = 1
insertIA = 1
insertIM = 1
insertIKCa = 1
insertIKNa = 1
insertIHVA = 1
insertIh = 1
insertINaP = 1
insertIAR = 0
insertIT = 1
inserted = new Vector(16)
AMPAsynList = new List()
GLUsynList = new List()
GABAAsynList = new List()
GABAsynList = new List()
synList = new List()
minisList = new List()
rlist = new List()
input = new List()
input.append(synList)
input.append(minisList)
rcount = 0
enarev = 60
ekrev = -90
ecarev = 140
if (modelType == 8) {
rho = 160
} else if (modelType == 9 || modelType == 10) {
rho = 160 // RS & EF
} else if (modelType == 11) {
rho = 165 // IB
} else if (modelType == 12) {
rho = 170 // RIB
} else if (modelType == 13) {
rho = 160 // ND
} else if (modelType == 14) {
rho = 120 // FS: 120 - 15.62 Hz, 110 - 19.53Hz, 100 - 24.41Hz, 50 - >50Hz, 30 - >60Hz, 10 - 100Hz, 1 - >130Hz
} else if (modelType == 15) {
rho = 175 // SIB
} else if (modelType == 16) {
rho = 165 // LTS
}
soma {
diam = 5.644 // um
L = 5.644 // um
}
dend {
diam = soma.diam
L = rho*soma.L
}
connect dend(0), soma(1)
if (insertNil) {
forall {
insert pas // Passive properties and nonspecific leak current
inserted.x[0] = 1
if (!strcmp(state,"none")) {
reduce = 0
} else if (!strcmp(state,"delta_short")) {
reduce = 0 //-0.000015 //Cx slow:0.0000025-0.0000032; ThCx slow:0; Spindles: -0.000005; SWDs: 0.00002
} else if (!strcmp(state,"delta_long")) {
reduce = 0 //-0.000015
} else if (!strcmp(state,"slow_short")) {
reduce = 0 //0.0000032
} else if (!strcmp(state,"slow_long")) {
reduce = 0 //0.0000032
} else if (!strcmp(state,"spindles_short")) {
reduce = -0.000025 //-0.00002
} else if (!strcmp(state,"spindles_long")) {
reduce = -0.000025 //-0.00002
} else if (!strcmp(state,"SWDs_short")) {
reduce = 0.00002
} else if (!strcmp(state,"SWDs_long")) {
reduce = 0.00002
} else if (!strcmp(state,"wake_short")) {
reduce = 0.00002
} else if (!strcmp(state,"wake_long")) {
reduce = 0.00002
}
if (modelType == 8) {
g_pas = 0.0000293
} else if (modelType == 9) { // RS
g_pas = 0.0000293 - 0.000005 - reduce
} else if (modelType == 10) { // EF
if (!strcmp(state,"delta_short") || !strcmp(state,"delta_long")) {
g_pas = 0.0000293 - reduce
} else if (!strcmp(state,"slow_short") || !strcmp(state,"slow_long")) {
g_pas = 0.0000293 //- 0.000005 - reduce
} else if (!strcmp(state,"spindles_short") || !strcmp(state,"spindles_long")) {
g_pas = 0.0000293
} else {
g_pas = 0.0000293 - 0.0000164
}
} else if (modelType == 11) { // IB
g_pas = 0.0000293 - reduce
} else if (modelType == 12) { // RIB
g_pas = 0.0000293 - reduce
} else if (modelType == 13) { // ND)
if (!strcmp(state,"none")) {
g_pas = 0.0000293 //- 0.000011
} else if (!strcmp(state,"delta_short")) {
g_pas = 0.0000293 - reduce //- 0.00001534 //network slow:0.0000293 - 0.000011; stand-alone slow:0.0000293 - 0.00001534; Spindles:0.0000293 - 0.00001; SWDs:0.0000293 - 0.00001534
} else if (!strcmp(state,"delta_long")) {
g_pas = 0.0000293 - reduce //- 0.00001534
} else if (!strcmp(state,"slow_short")) {
g_pas = 0.0000293 //- 0.00001534
} else if (!strcmp(state,"slow_long")) {
g_pas = 0.0000293 //- 0.00001534
} else if (!strcmp(state,"spindles_short")) {
g_pas = 0.0000293
} else if (!strcmp(state,"spindles_long")) {
g_pas = 0.0000293
} else if (!strcmp(state,"SWDs_short")) {
g_pas = 0.0000293 - 0.00001534
} else if (!strcmp(state,"SWDs_long")) {
g_pas = 0.0000293 - 0.00001534
} else if (!strcmp(state,"wake_short")) {
g_pas = 0.0000293 - 0.00001534
} else if (!strcmp(state,"wake_long")) {
g_pas = 0.0000293 - 0.00001534
}
} else if (modelType == 14) { // FS
if (!strcmp(state,"SWDs_short") || !strcmp(state,"SWDs_long") || !strcmp(state,"wake_short") || !strcmp(state,"wake_long")) {
g_pas = 0.0000293 - reduce/2 //SWDs:0.0000293 - reduce; Rest:0.0000293
} else {
g_pas = 0.0000293
}
} else if (modelType == 15) { // SIB
g_pas = 0.0000293 - reduce
} else if (modelType == 16) { // LTS
g_pas = 0.0000293 - reduce
}
e_pas = ekrev
cm = 0.75
if (modelType == 12 || modelType == 15) {
Ra = 55 //45-65; old: 60
} else {
Ra = 55
}
insert naleak // Na+ leak current
inserted.x[1] = 1
if (modelType == 10) { // EF
g_naleak = 0.0000078
} else if (modelType == 13) { // ND
g_naleak = 0.0000078
} else if (modelType == 16) { // LTS
g_naleak = 0.0000073
} else {
g_naleak = 0.0000078
}
e_naleak = 10
}
soma {
insert nad // Intracellular [Na+] decay
inserted.x[2] = 1
depth_nad = 2.5
taux_nad = 500
}
dend {
insert cad // Intracellular [Ca2+] decay
inserted.x[3] = 1
depth_cad = 2.5
taux_cad = 200
cainf_cad = 50e-6
insert nad // Intracellular [Na+] decay
depth_nad = 0.03
taux_nad = 1000
}
}
if (insertExC && !varDt) {
forall {
insert extracellular // Extracellular fields for monitoring total membrane current
inserted.x[4] = 1
}
}
if (insertHH) {
soma { // HH mechanism
insert hhCx
inserted.x[5] = 1
ena = enarev
ek = ekrev
gnabar_hhCx = 3
gkbar_hhCx = 0.216 // new: 0.216; old: 0.15
}
dend {
insert hhCx
ena = enarev
ek = ekrev
gnabar_hhCx = 0.0015
gkbar_hhCx = 0
}
}
if (insertIA) {
dend { // I_A
insert ikf
inserted.x[6] = 1
ek = ekrev
gkbar_ikf = 0.00148 // new: 0.00148; old: 0
}
}
if (insertIM) {
dend { // I_M
insert im
inserted.x[7] = 1
ek = ekrev
gkbar_im = 0.00001
}
}
if (insertIKCa) {
dend { // I_K[Ca]
insert iahpCx3
inserted.x[8] = 1
ekb = ekrev
cac2_iahpCx3 = 0.00115 // Should be adjusted depending on the [Ca2+]i fluctuations
power_iahpCx3 = 5.3
gkbar1_iahpCx3 = 0
if (modelType == 13) {
gkbar2_iahpCx3 = 0.00003 // ND2: 0.00015
} else {
gkbar2_iahpCx3 = 0
}
tau_m2_min_iahpCx3 = 830
insert ikca
inserted.x[9] = 1
ek = ekrev
if (modelType == 8) {
gkbar_ikca = 0.000001 // new: 0.000003; old: 0.000003
} else if (modelType == 9) { // RS
gkbar_ikca = 0.000001
} else if (modelType == 10) { // EF
gkbar_ikca = 0.000001
} else if (modelType == 11) { // IB
gkbar_ikca = 0.000001
} else if (modelType == 12) { // RIB
gkbar_ikca = 0.000001
} else if (modelType == 13) { // ND
gkbar_ikca = 0.000003 // ND2: 0.000001
} else if (modelType == 14) { // FS
gkbar_ikca = 0.000001
} else if (modelType == 15) { // SIB
gkbar_ikca = 0.000001
} else if (modelType == 16) { // LTS
gkbar_ikca = 0.000001
}
}
}
if (insertIKNa) {
soma { // I_K[Na]
insert iknaCx3
inserted.x[10] = 1
ek = ekrev
if (modelType == 13) { // ND
gkbar_iknaCx3 = 0.00007 // new: 0.00007; old: 0
} else {
gkbar_iknaCx3 = 0.00007 // new: 0.00007; old: 0
}
}
dend {
insert iknaCx3
ek = ekrev
if (modelType == 13) { // ND
gkbar_iknaCx3 = 0.00007 // new: 0.00007; old: 0
} else {
gkbar_iknaCx3 = 0.00007 // new: 0.00007; old: 0
}
}
}
if (insertIHVA) {
dend { // I_HVA
insert ihvaCx
inserted.x[11] = 1
eca = ecarev
if (modelType == 8) {
gcabar_ihvaCx = 0.000001 // new: ; old: 0.00001
} else if (modelType == 9) { // RS
gcabar_ihvaCx = 0.000001
} else if (modelType == 10) { // EF
gcabar_ihvaCx = 0.000001
} else if (modelType == 11) { // IB
gcabar_ihvaCx = 0.00001
} else if (modelType == 12) { // RIB
gcabar_ihvaCx = 0.00001
} else if (modelType == 13) { // ND
gcabar_ihvaCx = 0.000016
} else if (modelType == 14) { // FS
gcabar_ihvaCx = 0.000001
} else if (modelType == 15) { // SIB
gcabar_ihvaCx = 0.000016
} else if (modelType == 16) { // LTS
gcabar_ihvaCx = 0.00001
}
}
}
if (insertIh) {
dend { // I_h
insert iarCx3CaD
inserted.x[12] = 1
eh = -30
halfAct_iarCx3CaD = -91
ginc_iarCx3CaD = 2
if (modelType == 13) { // ND
cac_iarCx3CaD = 0.004500 // ND2: 1500
} else {
cac_iarCx3CaD = 0.001500
}
k2_iarCx3CaD = 0.000150
Pc_iarCx3CaD = 0.017
k4_iarCx3CaD = 0.00007
if (modelType == 14) { // FS
ghbar_iarCx3CaD = 0
} else {
ghbar_iarCx3CaD = 0.00002
}
}
}
if (insertINaP) {
soma { // I_Na(P)
if (!(modelType == 14)) { // FS
insert inapCx2
inserted.x[13] = 1
ena = enarev
if (modelType == 13) { // ND
//v_half_inapCx2 = -42 // ND2: -50, 0.000077
gnabar_inapCx2 = 0.00009
} else {
//v_half_inapCx2 = -42
gnabar_inapCx2 = 0.000077
}
}
}
dend {
if (!(modelType == 14)) { // FS
insert inapCx2
ena = enarev
if (modelType == 13) { // ND
//v_half_inapCx2 = -42 // ND2: -50, 0.000077
gnabar_inapCx2 = 0.00009
} else {
//v_half_inapCx2 = -42
gnabar_inapCx2 = 0.000077
}
}
}
}
if (insertIAR) {
dend { // I_AR
insert ior
inserted.x[14] = 1
ek = ekrev
gkbar_ior = 0.002
}
}
if (insertIT) {
dend {
insert itGHK // LVA I_T with GHK equations
inserted.x[15] = 1
if (modelType == 8) {
pcabar_itGHK = 0.1e-5
} else if (modelType == 9) { // RS
pcabar_itGHK = 0.1e-5
} else if (modelType == 10) { // EF
pcabar_itGHK = 0.1e-5
} else if (modelType == 11) { // IB
pcabar_itGHK = 1e-5
} else if (modelType == 12) { // RIB
pcabar_itGHK = 1e-5
} else if (modelType == 13) { // ND
pcabar_itGHK = 1e-5
} else if (modelType == 14) { // FS
pcabar_itGHK = 0
} else if (modelType == 15) { // SIB
pcabar_itGHK = 1e-5
} else if (modelType == 16) { // LTS
pcabar_itGHK = 4e-5
}
}
}
//forall nseg = int((L/(0.1*lambda_f(100))+0.9)/2)*2 + 1 // Lambda rule
forall nseg = 1
}
obfunc connect2target() {localobj nc //$o1 - target process, $2 - connection delay, $3 - connection weight, $s4 - the synapse type
soma nc = new NetCon(&v(0.5), $o1)
nc.threshold = -14.5
nc.delay = $2
nc.weight = $3
return nc
}
obfunc connectMini() {localobj nc //$s1 - type of synapse, $2 - connection delay, $3 - connection weight
if (!strcmp($s1,"AMPA")) {
nc = new NetCon(AMPAmini, AMPAsyn)
} else if (!strcmp($s1,"GLU")) {
nc = new NetCon(AMPAmini, GLUsyn)
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA")) {
nc = new NetCon(GABAAmini, GABAAsyn)
}
nc.delay = $2
nc.weight = $3
return nc
}
proc createAMPAsyn() {localobj r // $1 - release probability, $2 - ISO amplitude.
dend AMPAsyn = new AMPA_S(0.5)
AMPAsyn.gbar = 0.001945 // 18.57, 0.73, 4.58: 0.001945, 0.94, 0.22, 0.5, 0.55, 0
AMPAsyn.Alpha = 0.94
AMPAsyn.Beta = 0.22
AMPAsyn.Cmax = 0.5
AMPAsyn.Cdur = 0.55
AMPAsyn.Erev = 0
if (randomise.x[5]) {
AMPAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
AMPAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
AMPAsynList.append(AMPAsyn)
synList.append(AMPAsyn)
}
proc createGLUsyn() {localobj r // $1 - release probability, $2 - ISO amplitude.
dend GLUsyn = new GLU_S2(0.5)
GLUsyn.gbar_a = 0.001945 // 18.57, 0.73, 4.58: 0.001945, 0.94, 0.22, 0.5, 0.55, 0, 1
GLUsyn.Alpha_a = 0.94
GLUsyn.Beta_a = 0.22
GLUsyn.Cmax_a = 0.5
GLUsyn.Cdur_a = 0.55
GLUsyn.Erev_a = 0
GLUsyn.weight_a = 1
if (gid<100 || (gid>=150 && gid<250) || (gid>=300 && gid<400) || (gid>=450 && gid<550)) {
GLUsyn.u = 1 //1.7 //1.1
GLUsyn.tau_U = 200 //200 //1800
GLUsyn.d1 = 1 //(1-(1-0.78)/1e9) //(1-(1-0.78)/6)
GLUsyn.d2 = 1 //(1-(1-0.97)/1e9) //(1-(1-0.97)/6)
GLUsyn.amp = $2
GLUsyn.f = 0.000035
GLUsyn.phi = 0
} else {
GLUsyn.u = 1 //1.7 //1.1
GLUsyn.tau_U = 200 //1800
GLUsyn.d1 = 1 //(1-(1-0.78)/6) //(1-(1-0.78)/1e9)
GLUsyn.d2 = 1 //(1-(1-0.97)/6) //(1-(1-0.97)/1e9)
GLUsyn.amp = $2
GLUsyn.f = 0.000035
GLUsyn.phi = 0
}
GLUsyn.tau_D1 = 634 // 4.06, 2.44, 40: 0.2, 2500, 1.0327, 2.2364, 25.057, 43.495, 232.27, 1, 1, 0.05, 0.000043
GLUsyn.tau_D2 = 9300 // 4.02, 3.01, 50.05: 0.2, 2500, 1.5, 2.2364, 25.057, 43.495, 232.27, 1, 1, 0.05, 0.000044
GLUsyn.tau1_init_b = 3 // 4.05, 4.16, 63.71: 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 1, 0.05, 0.000051
GLUsyn.a2_b = 2.2364
GLUsyn.tau2_0_b = 25.057
GLUsyn.a3_b = 43.495
GLUsyn.tau3_0_b = 232.27
GLUsyn.tauAdj_b = 1
GLUsyn.gf_b = 0.25*1
GLUsyn.Mg_b = 2
GLUsyn.weight_b = 0.000051
if (randomise.x[5]) {
GLUsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GLUsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GLUsynList.append(GLUsyn)
synList.append(GLUsyn)
}
proc createGABAAsyn() {localobj r // $1 - release probability, $2 - ISO amplitude.
soma GABAAsyn = new GABAa_S(0.5)
GABAAsyn.gbar = 0.068 // 37.15, 0.55, 6.25: 0.068, 0.1, 0.2, 0.5, 0.8, -80
GABAAsyn.Alpha = 0.1
GABAAsyn.Beta = 0.2
GABAAsyn.Cmax = 0.5
GABAAsyn.Cdur = 0.8
GABAAsyn.Erev = -80
if (randomise.x[5]) {
GABAAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAAsynList.append(GABAAsyn)
synList.append(GABAAsyn)
}
proc createGABAsyn() {localobj r // $1 - release probability, $2 - ISO amplitude.
soma GABAsyn = new GABA_S(0.5)
GABAsyn.gbar_a = 0.068 // 37.15, 0.55, 6.25: 0.068, 0.1, 0.2, 0.5, 0.8, -80, 1
GABAsyn.Alpha_a = 0.1
GABAsyn.Beta_a = 0.2
GABAsyn.Cmax_a = 0.5
GABAsyn.Cdur_a = 0.8
GABAsyn.Erev_a = -80
GABAsyn.weight_a = 1.25
GABAsyn.u = 1 //1.7
GABAsyn.tau_U = 200
GABAsyn.d = 1 //(1-(1-0.94)/3)
GABAsyn.tau_D = 1900
GABAsyn.gbar_b = 0.25*0.0065 // 2.02, 59, 37.9, 105.2, 35.4, 127.9: 0.0065, 0.18, 0.0025, 0.19, 0.06, 17.83, 4, -90, 0.5, 0.8
// 2.01, 41.5, 30.7, 81.9, 56.6, 90.1: 0.0027, 0.18, 0.0025, 0.19, 0.06, 17.83, 8, -90, 0.5, 0.8
GABAsyn.K1_b = 0.18 // (/ms mM) forward binding rate to receptor (original: 0.18)
GABAsyn.K2_b = 0.0025 // (/ms) backward (unbinding) rate of receptor (original: 0.0096)
GABAsyn.K3_b = 0.19 // (/ms) rate of G-protein production (original: 0.19)
GABAsyn.K4_b = 0.06 // (/ms) rate of G-protein decay (original: 0.06)
GABAsyn.KD_b = 17.83 // dissociation constant of K+ channel (original: 17.83)
GABAsyn.n_b = 4 // nb of binding sites of G-protein on K+ (original: 4)
GABAsyn.Erev_b = ekrev // (mV) reversal potential (E_K)
GABAsyn.Cmax_b = 0.5 // short pulses (original: 0.5)
GABAsyn.Cdur_b = 0.8 // (original: 0.8)
if (randomise.x[5]) {
GABAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAsynList.append(GABAsyn)
synList.append(GABAsyn)
}
proc createSyn() { // $s1 - the synapse type, $2 - release probability, $3 - ISO amplitude.
if (!strcmp($s1,"AMPA")) {
createAMPAsyn($2,$3)
} else if (!strcmp($s1,"GLU")) {
createGLUsyn($2,$3)
} else if (!strcmp($s1,"GABAa")) {
createGABAAsyn($2,$3)
} else if (!strcmp($s1,"GABA")) {
createGABAsyn($2,$3)
}
}
obfunc getSyn() {localobj syn // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
syn = AMPAsyn
} else if (!strcmp($s1,"GLU")) {
syn = GLUsyn
} else if (!strcmp($s1,"GABAa")) {
syn = GABAAsyn
} else if (!strcmp($s1,"GABA")) {
syn = GABAsyn
}
return syn
}
obfunc getSynList() {localobj list // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
list = AMPAsynList
} else if (!strcmp($s1,"GLU")) {
list = GLUsynList
} else if (!strcmp($s1,"GABAa")) {
list = GABAAsynList
} else if (!strcmp($s1,"GABA")) {
list = GABAsynList
} else {
list = synList
}
return list
}
proc createMini() {localobj mini, r // $s1 - the synapse type, $2 - number of input streams.
mini = new minis()
mini.noise = 1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.negexp(1)
mini.noiseFromRandom(r)
rlist.append(r)
rcount += 1
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU")) {
mini.interval1 = 150*$2
mini.interval2 = 75*$2
AMPAmini = mini
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA")) {
mini.interval1 = 300*$2
mini.interval2 = 150*$2
GABAAmini = mini
}
minisList.append(mini)
}
obfunc getMini() {localobj mini // $s1 - the synapse type
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU")) {
mini = AMPAmini
} else if (!strcmp($s1,"GABAa") || !strcmp($s1,"GABA")) {
mini = GABAAmini
}
return mini
}
func is_art() { return 0 }
endtemplate Cx3cell