-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluatepClamp.m
225 lines (199 loc) · 10.2 KB
/
evaluatepClamp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function [outputFilename, performance] = evaluatepClamp(baseFilename, realDataDir, noiseFilename, excludedTimesNoise)
%% Load real event data
[csvDir, baseFilenameShort] = fileparts(baseFilename);
realData = load([realDataDir filesep baseFilenameShort '.mat']);
dt = realData.dt;
filename = realData.filename;
excludedTimes = realData.excludedTimes;
detectionParameters = realData.detectionParameters;
simulationParameters = realData.simulationParameters;
optimisationParameters = realData.optimisationParameters;
classificationParameters = realData.classificationParameters;
filtering = realData.filtering;
hitWindow = 10; % ms
noiseWindow = 20; % ms
%% Load noise data in case noise data is missing
if true %~isfield(realData, 'falseI') && ~isfield(realData, 'falseT')
% Load the file:
if nargin < 3
error('noiseFilename input variable is not set.');
else
noiseProperties = loadABF(noiseFilename);
end
% Determine filtering mode:
filtN.state = 'on';
filtN.nSweeps = noiseProperties.hd.lActualEpisodes;
if nargin < 4
filtN.excludedTimes.startPulse = [0.2000 1.6500];
filtN.excludedTimes.endPulse = [1.1000 2.2000];
filtN.excludedTimes.startGlitch = [];
filtN.excludedTimes.endGlitch = [];
%error('excludedTimesNoise input variable is not set.');
else
filtN.excludedTimes = excludedTimesNoise;
end
% Filter the voltage trace:
if strcmpi(filtN.state, 'on')
%[noiseProperties.sweep, ~, f2] = filterMinis(noiseProperties.sweep, noiseProperties.dt, filtN, true);
[noiseProperties.sweep, ~, f2] = filterMinis(noiseProperties.sweep, noiseProperties.dt, filtN, true, [], {'50, 150'});
close(f2);
end
noiseProperties.baseline = length(realData.classificationParameters.amplitudeArray);
% Detect noise events
detectionParametersSim = realData.detectionParameters;
detectionParametersSim.sampleInterval = noiseProperties.dt;
detectionParametersSim.smoothWindow = round(detectionParametersSim.smoothWindow/detectionParametersSim.sampleInterval);
waveform.estimate = false;
filtN.state = 'spectrum';
options.summaryPlot = false;
options.edit = false;
[~, ~, ~, ~, ~, noiseV] = detectMinis(noiseProperties.sweep, excludedTimes, detectionParametersSim, filtN, waveform, 1, options);
% excludedInds = zeros(size(noiseProperties.sweep));
% excludedInds(round(excludedTimes(excludedTimes > 0)./noiseProperties.dt)) = 1;
% noiseSD = std(noiseV(~logical(excludedInds)));
minPeakWidth = 0.5/noiseProperties.dt;
minPeakAmp = 0.01;
% [~, falseI] = findpeaks(noiseV, 'MinPeakWidth',minPeakWidth, 'MinPeakProminence',minPeakAmp);
filtNoiseV = movmean(noiseV,noiseWindow/noiseProperties.dt);
[~, falseI] = findpeaks(filtNoiseV, 'MinPeakWidth',minPeakWidth, 'MinPeakProminence',minPeakAmp);
[~, adjustedFalseI] = max(noiseV(falseI - noiseWindow/2 + 1 : falseI + noiseWindow/2));
falseI = falseI - noiseWindow/2 + adjustedFalseI;
falseT = falseI.*dt;
falseI(logical(ismember(round(falseT./dt),round((excludedTimes+dt)./dt)))) = [];
falseT(logical(ismember(round(falseT./dt),round((excludedTimes+dt)./dt)))) = [];
else
falseI = realData.falseI; %#ok<*UNRCH>
falseT = realData.falseT;
end
%% Define pClamp peformance data structure
header = {'Trace'; 'Search'; 'Category'; 'State'; 'Event Start Time (ms)'; 'Event End Time (ms)'; 'Baseline (mV)'; 'Peak Amp (mV)';
'Time to Peak (ms)'; 'Time of Peak (ms)'; 'Antipeak Amp (mV)'; 'Time to Antipeak (ms)'; 'Time of Antipeak (ms)'; 'Half-width (ms)';
'Half-amplitude (mV)'; 'Time to Rise Half-amplitude (ms)'; 'Time to Decay Half-amplitude (ms)'; 'Rise Tau (ms)'; 'Decay Tau (ms)';
'Max Rise Slope (mV/ms)'; 'Time to Max Rise Slope (ms)'; 'Max Decay Slope (mV/ms)'; 'Time to Max Decay Slope (ms)';
'Rise Slope 10% to 90% (mV/ms)'; 'Rise Time 10% to 90% (ms)'; 'Decay Slope 90% to 10% (mV/ms)'; 'Decay Time 90% to 10% (ms)';
'Area (mV*ms)'; 'Peak-to-Peak Frequency (Hz)'; 'Interevent Interval (ms)'; 'S.D. of Fit'; 'Template'};
peakTimeColumn = find(contains(header, 'Time of Peak (ms)'));
%% Initialise output variables
d = dir([baseFilename '*.csv']);
nRuns = numel(d);
sensitivity = cell(nRuns,1);
specificity = cell(nRuns,1);
FPR = cell(nRuns,1);
dPrime = cell(nRuns,1);
performance = cell(nRuns,1);
%% Evaluate pClamp performance
for iRun = 1:nRuns
% Get real data for a particular simulation instance
allTrue = realData.performance{iRun}(1,:);
trueI = find(allTrue);
trueT = trueI.*dt;
% Get detection data for a particular simulation instance
filename = [csvDir filesep d(iRun).name];
opts = detectImportOptions(filename);
opts.DataLines = [2,Inf];
opts.VariableTypes(1, 1:end) = {'char'};
data = readtable(filename, opts);
dataVarName = data.Properties.VariableNames{peakTimeColumn};
positivesT = data.(dataVarName); %#ok<*FNDSB>
if iscell(positivesT)
for iCell = 1:numel(positivesT)
positivesT{iCell} = str2double(strrep(positivesT{iCell},',',''));
end
positivesT = cell2mat(positivesT)';
elseif ~isnumeric(positivesT)
error('positivesT variable is of unsupported type');
else
positivesT = positivesT';
end
positivesT = positivesT(~isnan(positivesT));
positivesI = round(positivesT./dt);
excludedI = round(excludedTimes./dt);
positivesT(ismember(positivesI, excludedI)) = [];
positivesI(ismember(positivesI, excludedI)) = [];
% Associate detected events with true and false events
positivesAssociated2true = zeros(size(positivesI));
positivesAssociated2false = zeros(size(positivesI));
for iPositive = 1:numel(positivesI)
trueDist = abs(trueT - positivesT(iPositive));
[~, nearestTrueI] = min(trueDist);
positivesAssociated2true(iPositive) = trueI(nearestTrueI);
falseDist = abs(falseT - positivesT(iPositive));
[~, nearestFalseI] = min(falseDist);
positivesAssociated2false(iPositive) = falseI(nearestFalseI);
end
% Locate hits and misses
truePositives = zeros(1,numel(allTrue));
falseNegatives = zeros(1,numel(allTrue));
for iMini = 1:numel(trueI)
detectedPositivesT = positivesT(trueI(iMini) == positivesAssociated2true);
detectedPositivesI = positivesI(trueI(iMini) == positivesAssociated2true);
if ~isempty(detectedPositivesT)
detectedPositivesDist = abs(detectedPositivesT - trueT(iMini));
[minDist, minDistI] = min(detectedPositivesDist);
if minDist <= hitWindow/2
truePositives(detectedPositivesI(minDistI)) = 1;
else
falseNegatives(trueI(iMini)) = 1;
end
else
falseNegatives(trueI(iMini)) = 1;
end
end
% Locate false alarms
falsePositives = zeros(1,numel(allTrue));
falsePositives(positivesI) = 1;
falsePositives(logical(truePositives)) = 0;
% Locate correct rejections
positivesAssociated2false(logical(ismember(positivesI, find(truePositives)))) = [];
trueNegatives = zeros(1,numel(allTrue));
trueNegatives(falseI) = 1;
for iMini = 1:numel(falseI)
iPositivesAssociated2false = positivesAssociated2false(falseI(iMini) == positivesAssociated2false);
tPositivesAssociated2false = falseT(ismember(falseI, iPositivesAssociated2false));
if ~isempty(tPositivesAssociated2false)
detectedPositivesDist = abs(tPositivesAssociated2false - positivesT);
minDist = min(detectedPositivesDist);
if minDist <= hitWindow/2
trueNegatives(falseI(iMini)) = 0;
end
end
end
trueNegatives(logical(falseNegatives) | logical(truePositives) | logical(falsePositives)) = 0; % just as an insurance
sensitivity{iRun} = sum(truePositives)/(sum(truePositives) + sum(falseNegatives)); %#ok<*AGROW,*PFOUS> % True positive rate
specificity{iRun} = sum(trueNegatives)/(sum(trueNegatives) + sum(falsePositives)); % Correct rejection rate
FPR{iRun} = sum(falsePositives)/(sum(trueNegatives) + sum(falsePositives)); % False positive rate
if sensitivity{iRun} == 1
sensitivityApprox = 1-(1e-6);
else
sensitivityApprox = sensitivity{iRun};
end
if FPR{iRun} == 0
FPRapprox = 1e-6;
else
FPRapprox = FPR{iRun};
end
dPrime{iRun} = dprime_simple(sensitivityApprox, FPRapprox);
allTrue = zeros(1,numel(allTrue));
allTrue(trueI) = 1;
allTrue2 = zeros(1,numel(allTrue));
allTrue2(logical(truePositives) | logical(falseNegatives)) = 1;
allPositive = zeros(1,numel(allTrue));
allPositive(positivesI) = 1;
performance{iRun} = sparse([allTrue; allTrue2; allPositive; truePositives; falseNegatives; falsePositives; trueNegatives]);
% simulated event positions; hits (detected positions) + misses; hits (detected positions) + false alarms;
% hits (detected positions); misses; false alarms; correct rejections
% time = (1:numel(smoothV)).*dt;
% figure; plot(time, smoothV); hold on;
% plot(time(falseI), smoothV(falseI), '.r', 'MarkerSize',10);
% plot(time(trueI), smoothV(trueI), '.g', 'MarkerSize',10);
% plot(time(logical(truePositives)), smoothV(logical(truePositives)), 'og', 'MarkerSize',10);
% plot(time(logical(falsePositives)), smoothV(logical(falsePositives)), 'oy', 'MarkerSize',10);
% plot(time(logical(trueNegatives)), smoothV(logical(trueNegatives)), 'or', 'MarkerSize',10);
% plot(time(logical(falseNegatives)), smoothV(logical(falseNegatives)), 'ob', 'MarkerSize',10);
% legend('V_m','False events','True events','True positive','False positive','Correct rejection','False rejection');
end
%% Save pClamp performance data
outputFilename = [baseFilename '_pClamp.mat'];
save(outputFilename, 'sensitivity','specificity','FPR','dPrime','performance','falseI','falseT','dt',...
'filename','excludedTimes','detectionParameters','simulationParameters','optimisationParameters',...
'classificationParameters','filtering', '-v7.3');