forked from gustavz/DataChad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
261 lines (228 loc) · 8.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import logging
import os
import re
import shutil
import sys
import deeplake
import openai
import streamlit as st
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import (
CSVLoader,
DirectoryLoader,
GitLoader,
NotebookLoader,
OnlinePDFLoader,
PythonLoader,
TextLoader,
UnstructuredFileLoader,
UnstructuredHTMLLoader,
UnstructuredPDFLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
)
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import DeepLake
from constants import APP_NAME, DATA_PATH, MODEL, PAGE_ICON
logger = logging.getLogger(APP_NAME)
def configure_logger(debug=0):
log_level = logging.DEBUG if debug == 1 else logging.INFO
logger.setLevel(log_level)
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(log_level)
formatter = logging.Formatter("%(message)s")
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
logger.propagate = False
configure_logger(0)
def authenticate(openai_api_key, activeloop_token, activeloop_org_name):
# Validate all credentials are set and correct
# Check for env variables to enable local dev and deployments with shared credentials
openai_api_key = openai_api_key or os.environ.get("OPENAI_API_KEY")
activeloop_token = activeloop_token or os.environ.get("ACTIVELOOP_TOKEN")
activeloop_org_name = activeloop_org_name or os.environ.get("ACTIVELOOP_ORG_NAME")
if not (openai_api_key and activeloop_token and activeloop_org_name):
st.session_state["auth_ok"] = False
st.error("Credentials neither set nor stored", icon=PAGE_ICON)
st.stop()
try:
# Try to access openai and deeplake
with st.spinner("Authentifying..."):
openai.api_key = openai_api_key
openai.Model.list()
deeplake.exists(
f"hub://{activeloop_org_name}/DataChad-Authentication-Check",
token=activeloop_token,
)
except Exception as e:
logger.error(f"Authentication failed with {e}")
st.session_state["auth_ok"] = False
st.error("Authentication failed", icon=PAGE_ICON)
st.stop()
# store credentials in the session state
st.session_state["auth_ok"] = True
st.session_state["openai_api_key"] = openai_api_key
st.session_state["activeloop_token"] = activeloop_token
st.session_state["activeloop_org_name"] = activeloop_org_name
logger.info("Authentification successful!")
def save_uploaded_file(uploaded_file):
# streamlit uploaded files need to be stored locally
# before embedded and uploaded to the hub
if not os.path.exists(DATA_PATH):
os.makedirs(DATA_PATH)
file_path = str(DATA_PATH / uploaded_file.name)
uploaded_file.seek(0)
file_bytes = uploaded_file.read()
file = open(file_path, "wb")
file.write(file_bytes)
file.close()
logger.info(f"saved {file_path}")
return file_path
def delete_uploaded_file(uploaded_file):
# cleanup locally stored files
file_path = DATA_PATH / uploaded_file.name
if os.path.exists(DATA_PATH):
os.remove(file_path)
logger.info(f"removed {file_path}")
def load_git(data_source):
# Thank you github for the "master" to "main" switch
repo_name = data_source.split("/")[-1].split(".")[0]
repo_path = str(DATA_PATH / repo_name)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
branches = ["main", "master"]
for branch in branches:
if os.path.exists(repo_path):
data_source = None
try:
docs = GitLoader(repo_path, data_source, branch).load_and_split(
text_splitter
)
break
except Exception as e:
logger.error(f"error loading git: {e}")
if os.path.exists(repo_path):
# cleanup repo afterwards
shutil.rmtree(repo_path)
return docs
def load_any_data_source(data_source):
# ugly thing that decides how to load data
is_text = data_source.endswith(".txt")
is_web = data_source.startswith("http")
is_pdf = data_source.endswith(".pdf")
is_csv = data_source.endswith("csv")
is_html = data_source.endswith(".html")
is_git = data_source.endswith(".git")
is_notebook = data_source.endswith(".ipynb")
is_doc = data_source.endswith(".doc")
is_py = data_source.endswith(".py")
is_dir = os.path.isdir(data_source)
is_file = os.path.isfile(data_source)
loader = None
if is_dir:
loader = DirectoryLoader(data_source, recursive=True, silent_errors=True)
if is_git:
return load_git(data_source)
if is_web:
if is_pdf:
loader = OnlinePDFLoader(data_source)
else:
loader = WebBaseLoader(data_source)
if is_file:
if is_text:
loader = TextLoader(data_source)
elif is_notebook:
loader = NotebookLoader(data_source)
elif is_pdf:
loader = UnstructuredPDFLoader(data_source)
elif is_html:
loader = UnstructuredHTMLLoader(data_source)
elif is_doc:
loader = UnstructuredWordDocumentLoader(data_source)
elif is_csv:
loader = CSVLoader(data_source, encoding="utf-8")
elif is_py:
loader = PythonLoader(data_source)
else:
loader = UnstructuredFileLoader(data_source)
if loader:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = loader.load_and_split(text_splitter)
logger.info(f"loaded {len(docs)} document chucks")
return docs
error_msg = f"Failed to load {data_source}"
st.error(error_msg, icon=PAGE_ICON)
logger.info(error_msg)
st.stop()
def clean_data_source_string(data_source):
# replace all non-word characters with dashes
# to get a string that can be used to create a new dataset
dashed_string = re.sub(r"\W+", "-", data_source)
cleaned_string = re.sub(r"--+", "- ", dashed_string).strip("-")
return cleaned_string
def setup_vector_store(data_source):
# either load existing vector store or upload a new one to the hub
embeddings = OpenAIEmbeddings(
disallowed_special=(), openai_api_key=st.session_state["openai_api_key"]
)
data_source_name = clean_data_source_string(data_source)
dataset_path = f"hub://{st.session_state['activeloop_org_name']}/{data_source_name}"
if deeplake.exists(dataset_path, token=st.session_state["activeloop_token"]):
with st.spinner("Loading vector store..."):
logger.info(f"{dataset_path} exists -> loading")
vector_store = DeepLake(
dataset_path=dataset_path,
read_only=True,
embedding_function=embeddings,
token=st.session_state["activeloop_token"],
)
else:
with st.spinner("Reading, embedding and uploading data to hub..."):
logger.info(f"{dataset_path} does not exist -> uploading")
docs = load_any_data_source(data_source)
vector_store = DeepLake.from_documents(
docs,
embeddings,
dataset_path=f"hub://{st.session_state['activeloop_org_name']}/{data_source_name}",
token=st.session_state["activeloop_token"],
)
return vector_store
def get_chain(data_source):
# create the langchain that will be called to generate responses
vector_store = setup_vector_store(data_source)
retriever = vector_store.as_retriever()
search_kwargs = {
"distance_metric": "cos",
"fetch_k": 20,
"maximal_marginal_relevance": True,
"k": 10,
}
retriever.search_kwargs.update(search_kwargs)
model = ChatOpenAI(
model_name=MODEL, openai_api_key=st.session_state["openai_api_key"]
)
with st.spinner("Building langchain..."):
chain = ConversationalRetrievalChain.from_llm(
model,
retriever=retriever,
chain_type="stuff",
verbose=True,
max_tokens_limit=3375,
)
logger.info(f"{data_source} is ready to go!")
return chain
def build_chain_and_clear_history(data_source):
# Get chain and store it in the session state
# Also delete chat history to not confuse the bot with old context
st.session_state["chain"] = get_chain(data_source)
st.session_state["chat_history"] = []
def generate_response(prompt):
# call the chain to generate responses and add them to the chat history
with st.spinner("Generating response"):
response = st.session_state["chain"](
{"question": prompt, "chat_history": st.session_state["chat_history"]}
)
logger.info(f"{response=}")
st.session_state["chat_history"].append((prompt, response["answer"]))
return response["answer"]