-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_translator_model.py
54 lines (38 loc) · 1.61 KB
/
train_translator_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from utils.models import NeuralTranslator
from utils.loaders.neural_translator_loader import create_collection, get_train_loaders, get_deploy_loaders
from utils.train_utils import train_model, eval_network
from tqdm import tqdm
from utils.config import config
def create_dataset(epochs=100):
"""
Samples the GAN space and caches the corresponding sentiments
(You can also use the online generator)
:param epochs:
:return:
"""
create_collection(epochs=epochs)
def train_and_evaluate():
net = NeuralTranslator()
net.to(config['device'])
train_loader, test_loader = get_train_loaders(n_clusters=10, seed=1, n_sub_classes=10)
train_model(net, train_loader, epochs=200, lr=0.001, train_type='translator')
eval_network(net, train_loader, train_type='translator')
eval_network(net, test_loader, train_type='translator')
def train_deploy(seed=1):
train_loader = get_deploy_loaders(n_clusters=10, seed=seed, n_sub_classes=10)
net = NeuralTranslator()
net.to(config['device'])
train_model(net, train_loader, epochs=200, lr=0.001, train_type='translator')
eval_network(net, train_loader, train_type='translator')
torch.save(net.state_dict(), "models/neural_translator_" + str(seed) + ".model")
net = NeuralTranslator()
net.to(config['device'])
net.load_state_dict(torch.load("models/neural_translator_" + str(seed) + ".model"))
eval_network(net, train_loader, train_type='translator')
if __name__ == '__main__':
# create_dataset()
# train_and_evaluate()
# Create 5 views
for i in tqdm(range(20)):
train_deploy(seed=i)