You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Flattens the input. Does not affect the batch size. (Wrapper for Reshape)
Input
🟢️️
🟢️️
⚫️️
🟢️️
Used to instantiate a EDDL tensor
Reshape
🟢️️
🟢️️
⚫️️
🟢️️
Returns a new layer with the same data and number of elements as input, but with the specified shape
Squeeze
🟢️️
🟢️️
⚫️️
🟢️
Returns a new layer with all the dimensions of input of size 1 removed
Unsqueeze
🟢️️
🟢️️
⚫️️
🟢️
Returns a new layer with a dimension of size one inserted at the specified position
Select
🟢️️
🟢️️
⚫️️
🟢️
Returns a new layer which indexes the input tensor using the entries in indices
Slice
🟢️️
🟢️️
⚫️️
🟢️
Returns a new layer which indexes the input tensor using the entries in indices. (alias for Select)
Permute
🟢️️
🟢️️
⚫️️
🟢️️
Permutes the dimensions of the input according to a given pattern
Split
🟢️️
🟢️️
⚫️️
🟢️
Split a layer into a list of tensors layers
Embedding
🟢️️
🟢️️
⚫️️
️🟢️️
Turns positive integers (indexes) into dense vectors of fixed size; (also known as mapping). e.g. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
Transpose
🟢️️
🟢️️
⚫️️
️🟢️️
Permute the last two dimensions
ConstOfTensor
🟢️️
🟢️️
⚫️️
🟢️
Repeats a tensor across the batch
Expand
🟢️️
🟢️️
⚫️️
🟢️
Returns a layer with singleton dimensions expanded to a larger size
Where
🟢️️
🟢️️
⚫️️
️🔴️
Return elements chosen from x or y depending on condition
Resize
🟢️️
🟢️️
⚫️️
🟢️
Resize the input image to the given size. [height, width]
Clamp / Clip
🟢️️
🟢️️
⚫️️
🟢️
Clamps all elements in input into the range [min, max].
Repeat
🟢️️
🟢️️
⚫️️
🔴️️
Repeats the elements of a tensor along the specified dimension. (Elements in an axis can be repeated independently)
Tile
🟢️️
🟢️️
⚫️️
🔴️️
Repeats the elements of a tensor along the specified dimensions.
Broadcast
🟢️️
🟢️️
⚫️️
🔴️️
Produce an object that mimics broadcasting.
Shape
🟢️️
🟢️️
⚫️️
🔴️️
Returns the shape of its parent as his output
Activations
Functionality
CPU
GPU
cuDNN
ONNX
Comments
ELU
🟢️️
🟢️️
⚫️️
🟢️️
Exponential linear unit
Exponential
🟢️️
🟢️️
⚫️️
🟢️️ (Custom Op)
Exponential (base e) activation function
HardSigmoid
🟢️️
🟢️️
⚫️️
🟢️️
Hard sigmoid activation function
LeakyReLu
🟢️️
🟢️️
⚫️️
🟢️️
Leaky version of a Rectified Linear Unit
Linear
🟢️️
🟢️️
⚫️️
🟢️️ (Custom Op)
Linear (i.e. identity) activation function
ReLu
🟢️️
🟢️️
⚫️️
🟢️️
Rectified Linear Unit
Softmax
🟢️️
🟢️️
🟢️
🟢️️
Softmax activation function
Selu
🟢️️
🟢️️
⚫️️
🟢️️
Scaled Exponential Linear Unit (SELU)
Sigmoid
🟢️️
🟢️️
⚫️️
🟢️️
Sigmoid activation function
Softplus
🟢️️
🟢️️
⚫️️
🟢️️
Softplus activation function
Softsign
🟢️️
🟢️️
⚫️️
🟢️️
Softsign activation function
Tanh
🟢️️
🟢️️
⚫️️
🟢️️
Hyperbolic tangent activation function
ThresholdedReLU
🟢️️
🟢️️
⚫️️
🟢️️
Thresholded Rectified Linear Unit
PReLU
⚫️️
⚫️
⚫️
⚫️️
Parametric Rectified Linear Unit
Convolutional layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
Conv1D
🟢️️
🟢️️
🟢️
🟢️️
1D convolution
Conv2D
🟢️️
🟢️️
🟢️
🟢️️
2D convolution
Conv3D
⚫️️
⚫️
🟢️️
🟢️
3D convolution
Pointwise
🟢️️
🟢️️
🟢️
🟢️️
2D pointwise convolution
DepthwiseConv2D
⚫️
⚫
🟢️
🟢️
2D depthsise convolution
TransposedConv2D
⚫️️
⚫️
🟢️
🟢️
2D Transposed convolution
TransposedConv3D
⚫️️
⚫️
🟢️
🟢️
3D Transposed convolution
UpSampling2D
🟢️️
🟢️️
⚫️️
🟢️️
Practically the same as Scale(mode="nearest"). Instead of performing nearest interpolation, this works by repeating n times the elements of each axis [2, 1] => [2, 2, 1, 1]
UpSampling3D
🟢️️
🟢️️
⚫️️
️️🟢️️
Practically the same as Scale(mode="nearest"). Instead of performing nearest interpolation, this works by repeating n times the elements of each axis [2, 1] => [2, 2, 1, 1]
Pooling layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
MaxPool1D
🟢️️
🟢️️
🟢️️️
🟢️️
1D MaxPooling operation
MaxPool2D
🟢️️
🟢️️
🟢️️
🟢️️
2D MaxPooling operation
MaxPool3D
🟢️️
🟢️
🟢️️️
🟢️
3D MaxPooling operation
AveragePool1D
🟢️️
🟢️️
🟢️️️
🟢️️
1D AveragePooling operation
AveragePool2D
🟢️️
🟢️️
🟢️️️
🟢️️
2D AveragePooling operation
AveragePool3D
🟢️️
🟢️
🟢️️️️
🟢️️️
3D AveragePooling operation
GlobalMaxPool1D
🟢️️
🟢️️
🟢️️️
🟢️️
1D GlobalMaxPooling operation
GlobalMaxPool2D
🟢️️
🟢️️
🟢️️️
🟢️️
2D GlobalMaxPooling operation
GlobalMaxPool3D
🟢️️
🟢️
🟢️️️
🟢️️️
3D GlobalMaxPooling operation
GlobalAveragePool1D
🟢️️
🟢️️
🟢️️️
🟢️️
1D GlobalAveragePooling operation
GlobalAveragePool2D
🟢️️
🟢️️
🟢️️️
🟢️️
2D GlobalAveragePooling operation
GlobalAveragePool3D
🟢️️
🟢️
🟢️️️️
🟢️️️
3D GlobalAveragePooling operation
Data transformation/augmentation
Data transformations
Deterministic transformations
Functionality
CPU
GPU
cuDNN
ONNX
Comments
Crop
🟢️️
🟢️️
⚫️️
⚫️️
Crops the given image at [(top, left), (bottom, right)]
CenteredCrop
🟢️️
🟢️️
⚫️️
⚫️
Crops the given image at the center with size (width, height)
CropScale
🟢️️
🟢️️
⚫️️
⚫️
Crop the given image at [(top, left), (bottom, right)] and scale it to the parent size
Cutout
🟢️️
🟢️️
⚫️️
⚫️
Selects a rectangle region in an image at [(top, left), (bottom, right)] and erases its pixels using a constant value
Flip
🟢️️
🟢️️
⚫️️
⚫️
Flip the given image at axis=n
HorizontalFlip
🟢️️
🟢️️
⚫️️
⚫️
Horizontally flip the given image
Pad
🟢️️
🟢️️
⚫
🟢️
Pad the given image on all sides with the given "pad" value
Rotate
🟢️️
🟢️️
⚫️️
⚫️
Rotate the image by angle
Scale
🟢️️
🟢️️
⚫️️
🟢️️
Resize the input image to the given size. [height, width]. Does not include backward (see Resize)
Shift
🟢️️
🟢️️
⚫️️
⚫️
Shift the input image [a, b]
VerticallyFlip
🟢️️
🟢️️
⚫️️
⚫️
Vertically flip the given image
Data augmentations
Apply data transformations with random parametrization.
Functionality
CPU
GPU
cuDNN
ONNX
Comments
RandomCrop
🟢️️
🟢️️
⚫️️
⚫️
Crop the given image at a random location with size [height, width]
RandomCropScale
🟢️️
🟢️️
⚫️️
⚫️
Crop the given image randomly by the size in a range [a, b] by and scale it to the parent size
RandomCutout
🟢️️
🟢️️
⚫️️
⚫️
Randomly selects a rectangle region in an image and erases its pixels. The random region is defined by the range [(min_x, max_x), (min_y, max_y)], where these are relative values
RandomFlip
🟢️️
🟢️️
⚫️️
⚫️
Flip the given image at axis=n randomly with a given probability
RandomHorizontalFlip
🟢️️
🟢️️
⚫️️
⚫️
Horizontally flip the given image randomly with a given probability
RandomRotation
🟢️️
🟢️️
⚫️️
⚫️
Rotate the image randomly by an angle defined in a range [a, b]
RandomScale
🟢️️
🟢️️
⚫️️
⚫️
Resize the input image randomly by the size in a range [a, b]
RandomShift
🟢️️
🟢️️
⚫️️
⚫️
Shift the input image randomly in range [a, b]
RandomVerticalFlip
🟢️️
🟢️️
⚫️️
⚫️
Vertically flip the given image randomly with a given probability
Merge layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
Add
🟢️️
🟢️️
⚫️️
🟢️️
Layer that adds a list of inputs
Concatenate
🟢️️
🟢️️
⚫️️
🟢️️
Layer that concatenates a list of inputs
Average
⚫
⚫️
⚫️
⚫
Layer that averages a list of inputs
Dot
⚫
⚫️
⚫️
⚫
Layer that computes a dot product between samples in two tensors
Multiply
⚫
⚫️
⚫️
⚫
Layer that multiplies (element-wise) a list of inputs
Maximum
⚫
⚫️
⚫️
⚫
Layer that computes the maximum (element-wise) a list of inputs
Minimum
⚫
⚫️
⚫️
⚫
Layer that computes the minimum (element-wise) a list of inputs
Substract
⚫
⚫️
⚫️
⚫
Layer that subtracts two inputs
Normalization
Functionality
CPU
GPU
cuDNN
ONNX
Comments
BatchNormalization
🟢️️
🟢️️
🟢️
🟢️️
Batch normalization layer (Ioffe and Szegedy, 2014)
LayerNormalization
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Layer normalization layer (Ba et al., 2016)
GroupNormalization
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Group normalization layer (Yuxin Wu and Kaiming He, 2018)
Norm
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
NormMax
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
NormMinMax
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Noise layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
GaussianNoise
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Apply additive zero-centered Gaussian noise
UniformNoise
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Apply additive zero-centered uniform noise
Operators layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
Abs
🟢️️
🟢️️
⚫️️️️
🟢️️
Sum
🟢️️
🟢️️
⚫️️
🟢️️
Div
🟢️️
🟢️️
⚫️️
🟢️️
Exp
🟢️️
🟢️️
⚫️️
🟢️️
Log
🟢️️
🟢️️
⚫️️
🟢️️
Log2
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Log10
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Mult
🟢️️
🟢️️
⚫️️
🟢️️
Pow
🟢️️
🟢️️
⚫️️
🟢
Sqrt
🟢️️
🟢️️
⚫️️️
🟢️️
Sub
🟢️️
🟢️️
⚫️️
🟢️️
Round
🔴️️
🔴️️
⚫️️
🔴️️
Round of the elements of input
Ceil
🔴️
🔴️️
⚫️️
🔴️️
Ceil of the elements of input
Floor
🔴️️
🔴
⚫️️
🔴️️
Floor of the elements of input
Equal
🟢️️
🟢️️
⚫️️
️🔴️
Return (x1 == x2) element-wise
Reduction layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
Max
🟢️️
🟢️️
⚫️️
🟢️️
Mean
🟢️️
🟢️️
⚫️️
🟢️️
Min
🟢️️
🟢️️
⚫️️
🟢️️
Sum
🟢️️
🟢️️
⚫️️
🟢️️
Var
🟢️️
🟢️️
⚫️️
⚫ (Not in ONNX)
Argmax
🟢️️
🟢️️
⚫️️
🟢️️
Reurrent layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
GRU
🟢️️
🟢️️
⚫️️
🟢️
Gated Recurrent Unit - Cho et al. 2014
LSTM
🟢️️
🟢️️
⚫️️
🟢️️
Long Short-Term Memory layer - Hochreiter 1997
RNN
🟢️️
🟢️️
⚫️️
🟢️
Fully-connected RNN where the output is to be fed back to input
Regularizer layers
Functionality
CPU
GPU
cuDNN
ONNX
Comments
L1
🟢️️
🟢️️
⚫️️
⚫
Lasso Regression
L2
🟢️️
🟢️️
⚫️️
⚫
Ridge Regression
L1L2
🟢️️
🟢️️
⚫️️
⚫
Lasso Regression + Ridge Regression
Initializers
Functionality
CPU
GPU
cuDNN
Comments
Constant
🟢️️
🟢️️
⚫️️
Initializer that generates tensors initialized to a constant value
GlorotNormal
🟢️️
🟢️️
⚫️️
Glorot normal initializer, also called Xavier normal initializer
GlorotUniform
🟢️️
🟢️️
⚫️️
Glorot uniform initializer, also called Xavier uniform initializer
HeNormal
🟢️️
🟢️️
⚫️️
He normal initializer
HeUniform
🟢️️
🟢️️
⚫️️️️
He uniform initializer
RandomNormal
🟢️️
🟢️️
⚫️️
Initializer that generates tensors with a normal distribution
RandomUniform
🟢️️
🟢️️
⚫️️
Initializer that generates tensors with a uniform distribution
Identity
⚫️
⚫️
⚫️
Initializer that generates the identity matrix
LeCunUniform
⚫
⚫
⚫
LeCun uniform initializer
LeCunNormal
⚫
⚫
⚫
LeCun normal initializer
Orthogonal
⚫️
⚫
⚫
Initializer that generates a random orthogonal matrix
TruncatedNormal
⚫
⚫
⚫
Initializer that generates a truncated normal distribution
VarianceScaling
⚫
⚫️
⚫️
Initializer capable of adapting its scale to the shape of weights
Constraints
Functionality
CPU
GPU
cuDNN
Comments
MaxNorm
⚫️
⚫️️
⚫️️
MaxNorm weight constraint
MinMaxNorm
⚫️
⚫️️
⚫️️
MinMaxNorm weight constraint
NonNeg
⚫️
⚫️️
⚫️️
Constrains the weights to be non-negative
UnitNorm
⚫️
⚫️️
⚫️️
Constrains the weights incident to each hidden unit to have unit norm
Loss functions
Functionality
CPU
GPU
cuDNN
Comments
CategoricalCrossEntropy
🟢️️
🟢️️
⚫️️
CCE (The output is represented by n values that represent the probabilities each class)
BinaryCrossEntropy
🟢️️
🟢️️
⚫️️
BCE (The output is represented by a single value that represent the probability of the second class)